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On the Wave Resistance Theory of a Submerged Body

By Masatoshi BessHo
Defence Academy

Introduction

In the theory of wave-making resistance in an ideal fluid in which
the viscosity of water is ignored, the first requirement is to obtain such
velocity potential as to satisfy the boundary condition.

There are two boundary conditions in this case. One of them is
called the boundary condition on the surface of the body for which
wave-making resistance is considered. The other is called the boundary
condition on the free surface.

However, the one is not necessarily independent of the other. When
waves are created on the surface of water, their effect, if differ in size,
is exerted on the body. If velocity potential is obtained by the second
approximation in which the said effect is taken into account, the re-
sultant second approximate value of the waves is different more or less
than that of the first approximation. Such mutual dependency goes on
when higher approximation is attempted to be obtained for the velocity
potential and the waves.

In the existing theory of wave-making resistance the velocity poten-
tial is obtained in the first approximation by employing the condition on
the surface of the body for which the disturbance caused by the waves
is ignored.

The author of this paper was not satisfied with such treatment of
the problems. Over a period of several years he has attempted to find
a solution by employing the condition on the surface of the body for
which the effect of the disturbance caused by the waves was taken
into consideration. For this purpose he selected submerged bodies for
which mathematical analysis could be made with comparative ease. He
examined his solution thus obtained comparing it with that of other
researchers.

In Chapter 1 of this paper three of his papers [17:[2]-[3] on the
subject are put together. In £1 a general equation is obtained for a
submerged spheroid and numerical examples are given [1]. In §2 as a
special case of the study made in the preceding section an equation is
induced for a submerged sphere [1]. In §3, with respect to a prolate
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spheroid with a major-minor-axis ratio of approximately 4, comparisons
are made between the numerical examples of the theorectical calculation
and the values measured in a model basin experiment [2]. In §4 a
general solution is obtaind for a submerged body of an arbitrary form
by the method of successive approximations [3].

In §5 in Chapter 2 attention is paid to the fact that, in the exist-
ing theory, the treatment of the boundary condition on the free surface
is based on the assumption of the so-called infinitesimal wave amplitude,
i.e., the condition is linearized. The author examines what change would
be found in the form of the velocity potential when the boundary condi-
tion on the free surface is treated in a non-linearized form, i.e., by
taking the effect of finite wave height into account [4]. In this case,
in order to avoid extreme difficulty to be encountered in the frontal
attack of the problem of the three-dimensional wave motion, a submerged
cylinder is chosen as the subject of study. A two-dimensional wave motion
is examined in the case where a submerged cylinder having infinite
length and placed horizontally advances at a uniform speed in the direction
which forms a right angle to the cylinder’s axis.

Needless to say that, in the above discussions, the boundary condition
on the cylinder’s surface is treated exactly.

In &6 the author discusses the ratio at which the velocity potential,
wave-making resistance, lift etc. change when the condition on the body’s
surface is alone exactly treated, with the condition on the free surface
being left linearized.

That change of the ratio is compared with the change of that which
is found with the velocity potential, wave-making resistance, lift etc. when
the condition on the free surface is treated exactly by cosidering also
the effect of finite wave height.

Chapter 1 Higher Approximation to the Wave-Making Resistance
of a Submerged Body (Three-Dimensional Problem)

§1 Expressions for the wave-making resistance of a submerged spheroid

1.1 As the example of the comparison made between the first appro-
ximate values and the accurate ones of the forces acting on a submerged
body in a uniform stream, we have HAVELOCK’s work in which he treated
the case of a circular cylinder [A-1]. Here the author discusses the case
of a sphere, as a limit of an ellipsoid or a prolate spheroid.

At first, let us expand the velocity potential in harmonics. Consider
an ellipsoid, submerged in a uniform stream V with the constant depth
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f, axes of which are parallel to those of the coordinate system. The
axes have a half length a, b and e, respectively.

Take the origin at the centre of the ellipsoid, with Oz vertically
upwards and Ox horizontal in the opposite direction of the stream.

The velocity potential of the motion with the source strength Vo
over the surface of the body S is given as

Sb(x! Y, z)=VE+¢1+¢2 (1)
and

— o’(ﬂ?’, yf! zf)
4y A=V [ [2E 1D g (2)
where D is the distance from the point (@, y,2) to (x',9,2), or
Vv r- .
= = y b =, y 2
b= f ! fk, t) exp (—ke+ikw)dkdt, 2>0  (2-A)
and

T f [ " F e, )bk, T t) exp (—2fh+ke+ikw) dkdt,  z<2f

(3)
where w=xcost+ysint
and
Sk, t)=| | o exp (kz—ikw)dS
/]
and h(k, ke, t)=(k cos® t -+, + pi cos t)/(f cos® t — ke, + uicost) (4)

where u is the usual infinitesimal factor.
Let us now consider an ellipsoid, expand & into the ellipsoidal har-
monic G} of n-th degree and m-th order on the surface S as [A-3]

Py AN
2mabe wm k*{11(0)}2

2y

a(x, y, 2)= Gi(x, y, 2) (5)

where p is a distance from the origin to the tangential plane at the
a ab

point (x, y, z), « is each of {1 b be abc}, {11(#)} is the product of charae-
¢ ca n,m

teristic values of n-th degree and m-th order, and A” is a constant

independent of the coordinates.

And we have by the integral theorem [A-3]

b=y oz A [[CPis_yraer (2B
2mabe ww k*{110)}* /S D Ay
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where ™ is an exterior harmonic corresponding to G, an interior one.
By the more general integral theorem [A-3] we have

f f G exp (kz—ikw) pdS
=4mrabex | 11(6)}? 270! I'(n+3/2)

w0 (2n+1)1(1/2D)*+ 3

o0 @ 2 e
XL, {DVHE(-2, ) exp (be—ikw) (6)

where D? stands for an operator a®*/0x®+ b%%/oy*+ ¢*0°/oz". I,.1 is a
Bessel function of an imaginary argument, H2' is a homogeneous harmonic.
After the operation =z, ¥, z should be put to zero.

Making use of the above expression, we have from (4)

)= 3 An 28 PR

nn - (2n4+1)! (1/2D)"E
W 0 4 a° ;
><I,,+;,(D)H,,Kq—, - ,g)exp(kz—@kfw) (4-A)
& ox oy oz’

Next, the expansion of ¢, is given as

po=—V 3 IIG(x, ¥, 2) (7)

n,m

where

I,”::zl—w [ : f’ £k, Oh(k, ko, 1) exp (— £k) Codkdt (8)

if exp (kz+ikw) can be expanded as

exp (kz +ikw):;§; CrnGi(x, y, 2) (9)
where |
Cr= f f G2 exp (kz+ikw) pdS ff {Gr}:pdS (10)
Since [A-3]
[ [ 1621:pas=amabent (110N} * 2"
) wm' D (2n1)!

xHi(a-l, 02, 0 8 \mx( 2, Y, 2 )
'n‘ aﬁ‘," ays A n arbsc

=4 S : : (n+m)'
—=47rabe {?L],Tm(ﬁ)} (2n+1), (n—m)! e

where ¢, is 1 for m=0 and 2 for other cases, we have from (6)
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Cr= 2"n! e, (n—m)! ]_'(n+3/2)1- (D)H;'( a p 0 g jl‘ )exp(kz-i—ikw)
oz

@n+1)! " (ntm)! 12Dy 4 %" o

(10-A)
When we take the w-axis as the axis of harmonies, we have [A-3]

T oy )= wnlinmt ) AC2) )}

where »=2z+41y and {=z—1y, so explicitly after the operation
2(__?:)7: +mku

k)= 3 A" St (2 4-B

fk, t)= (2 T e ()Y, () (4-B)
s TR L :
= ol k" S2(E)Y,(9) (10-B)

where
287(t)=cos" "t {(1+sin )"+ (1 —sin t)"}

and ¥, (9)=0"(n+3/2)L,.1 (9/(9/2)"*2, 9*=k*(c*—a’cos® t—b* sin® )

Further, ¥.,(6) equals I'(n+3/2)I,,1(—i9)/(—i#/2)**2, tending to 1 as
#-—>0. In the case of a submerged sphere # becomes zero, we have

¥,=1.

1.2 Let us confine ourselves to the problem of a horizontal prolate
spheroid, and represent the harmonics explicitly.
The integral expression of the interior harmonic is generally [A-5]

2n n’(n+m) *rn (B
Gz, y,2)= ”f Pn( A" cos mudu 12
oy )= <) (12)
where
A'=a’—c*cos 'u—b*sin*u and B=ux+1iz cos u—iy sin u

Here we renew the notation for the prolate spheroid, of which
a>b=c, and write a*—b*=¢*. Introduce also the spheroidal polar coordi-
nates », # and ¢, that is,

x=ccoshycos®, y=—csinhysin@singp, z=csinh n sinf cos

or write also cosh y=y, cos0=p
From this expression we have directly [A-3]
Naal I !
G, y, )= 2" =M b pu) Pt ) cos mep (12-A)
(2n)!
Next, for the exterior harmonic we have had an integral represen-
tation from (2:-A) and (4-B), that is,
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" 2%+ n-8/2)(—i) ™ S
(UK , Sn(t)dt
o 4y 2)= T(2n+1)(n+m)l e f (®)

k dk
(k cost)" 2
Since the integral with respect to & is of a LIPSCHITZ-HANKEL type

[A-4] and it is expressed by the Legendre function of the second kind,
we have

G, )= @2n)! (—i)" IQ ( -1z cos w—1y sin u ) T
m2"n! (n—m)! c"*! "\ ¢ ’

X!mexp(M— ‘ —;—iﬁw)lﬂ;é(k cos t) (13)

(13-A)
where L is the path from 7—ie, m+ico, i to —ice.
This path can be deformed in the plane of the argument of @, with-
out crossing its cut in the manner that u varies —m to .
Thus we have [A-3]

s — ™2 ! it "
62wy, 9= 5, PGP cosmp  (13-B)

These functions are reduced to homogeneous harmonics, when the
spheroid becomes a sphere, that is,

Gu(x, y,2)=r"P}(u) cos mep (12-B)
2 1
57, y, 2)= P(u) cos my 13-C
(x, ¥, 2)= TRl () 7z ( )
where x=rcosl, y=—rsinfsing and z=rsind cosy
1.3 Now, our problem is to obtain the coefficients A;.

In the case of x=cuv=G{(%, ¥, 2), using the expansions (2-B) and (7),
we have infinite equations to express the boundary condition that the
normal velocity at the surface of the spheroid must vanish

{=Bi(—1+17),
Ar=B}I} (14)
where
wo (=) 2¢) || APy | dQy
Bh= (2) (n+m)l(n—m)!{n(2( ;!) }! %/ (g s’ cosh v, =afc

(15)
This tends to —a® 'n(2n-+1)/2(n+1) in the case of the sphere with a

radius a.
Putting (4-B) into (8), we have
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It=3 AAM() (8-A)
Vil
where

MG =

E %an V-p

Susedt [ ki, ky, )27 A on e
(A m)l(2s+1)(o— ! vrf f (s b ™50

(16)
Let us introduce matrices

= (414144} -}, C={—B}000---}. These two are column
matrices, B is a diagonal matrix of the sequence {BIB\B.---}, and

S={M([})}, aranged in columns by =, m and in rows by

v, gy according to the numerical order of n at first and next of m.
And we have a matrix equation in place of (14)

A=C+BSA, or (E—BS)A—C (14-A)

where E is the unit matrix.
Consequently we have a solution

A=(E—BS)'C (17)
Expanding this reciprocal matrix in Neumann series, we are able to
have a successive approximate solution. In fact we have the so-called
first approximate solution as the first term of this expansion, that is,
Al=—Bj.
For our present purpose, it is sufficient to take as follows:
Ai=—Bi—(B)*M([\)— (B)* {BIM*(i[))+ BIMGIH M}
=—BiBM(i|})— B\BI{BIMG)M([)+ BIMGHMGR} + (17-A)
Ay=—BiB:M(:}), Ai=—BiBIM(]})), Ai=—BiBIM(})

§2 Numerical evaluation for a submerged sphere

2.1 We confine ourselves again to the problem of a sphere, and let
us evaluate the necessary integral.

Introduce another integral, for the integral M(7]!) is inconvenient,

K(m, n)="_yn+1 [ "k, 1, ) cos mtdt f e rkrde (18)
2 J_ /

Lim, w3 m)= ) {(=)"K(m+ o m) + K(m— s, ) (19)

where v=2k,f
K{(m,n) has the recurrence formula
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— K(m+2, n)+2K(m, n)— K(m—2, n)
=4y K(m, n—1)+4i" {5, (n—1)+9,n!} (20)
where &, is 1 for m=0 and 0 for m=-0, and #, is 1/2 for m=0, 1/4
for m==+2 and 0 for other cases.
From this formula all K(m,n) are reduced to K(1,n) and K(0, n).

At first integrating with respect to ¢ by the contour integration,
they are

sy PR du
K0, n)=nl—2y"*e 7 | e(1—u)* = 18-A
i L (18-A)
oo 'rg+% &
K(l,%)zz'?“%e#f eit(l'{— :f) dviii =21/ " e W, 0, a()
’ (18-B)

where W,,. .. is the Whittaker function [A-5]. This is the case which is
represented by making use of the modified Bessel function K,.

The second term of the former integral is given by polynomials of

v and the following function E(y) [A-6]-[A-T], when we expand (1—u)"
and integrate by parts.
1 L dt et F

E(y)="e7 | e = f e'dt 21

g f o (21)

Thus we have
K(0, 1)=1+2y—2y(1+2y)E(y) 1
_ i .
K(0,2)=2+43y+2y 27( 9 +2y-+2y )E("/) (18-C)

15, 9

K, 3):6+1257+472+273—2*/( +5 v+372+2~/3>E(ry)

4

L(1,1;2)=4K(0, 1)+1+7, L(1,1;3)=yK(0, 2)+3+2y

} (19-A)
L(1, 1; 4)=yK(0, 3)+12+ 6

L(1,0;2)=K(1, 2)=vae‘”2{Ku( ;’ )+(1+ i )Kl( ; )}

N M 1 A 1.2 v }

L(1, 0; 3)=K(1, 8)=+'e {(1+§)K0(2 )+(1+ > +AIB)K1( 2)
(19-B)

2.2 The forces acting on a body can be calculated directly by the

pressure integration, but this method needs complicated operations. In
order to avoid them we shall use the equivalent formula, that is,
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K= —2p V% f f h(le, ke, )] £, £) e~k cos tdkdt

- O

Z=—2,V? f E f R, oy )| f (K, £) [Pe~ 2 edledt

M,=4mp v f azdS

2,V f f (&, ky, t) {f(fc, t)% fk, t)}e‘”*kdkdt

where p=Fk cost, and also
_17a
[ f oxdS= [ 10k O+7 Gk, 1) |,

In the case of a sphere, since we have from (4.B) and (17.A)

| £k, £) 2= Z[ {1—BL(L, 1; 2)} (ka)* cos t— ‘;,941,(1, 1; 3)(ka)? cos® ¢
+%S {L*1, 0; 2)(ka)*+3L*1, 1; 2)(ka)® cos® t

—2K*(1, 2)(ka)® cos® t} ] (23)

where B=a/2f, we have from the above formulae making use of K and
L function

Co=— X __—c,[(1-pLa, 1,2)) - 26°L(1, 1; 9K, 3YK(1, 2)
e VE oL 9
+E8 s 122k, 2+ LKL 2K (1, )] (24)
4 v
N R, | hl —BLA, 1; 2)}—7 L1, 1; 4)
mpa® V*?

+%ﬂ {8LX(1, 1; 2)—2K*(1, 2)+ K*(1, 2)K(0, 8)/L(1, 1; 3)}] R

where (3’11.D and Czu are the first approximate values and given as [A-8]
C,,=B"K(1,2), C.=B'L1,1;3) (26)

Besides, the moment is clearly zero in our case, but the first term
is not zero, so the second term is not zero either. The second term
must be equal to the first term with the opposite sign. In fact it will
be found to be so by the same calculation as the above.

The numerical values are given in Tables 1, 2 and Figs. 1, 2. As
we may expect, general features are very analogous with those of the
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TABLE 1. WAVE RES[STAN(.‘-E OF A SPHERE

o F R g a/?f 1/4 ‘ 8= 1/3

r= ‘ C"“'u/'!j‘ | 204 -+ i
-\/gj | C,(,/ﬁ r XlOU XlOOl %100 rgx 100 Cm/[‘i r XlUOI %100 xmniraxloo
18 0.33331-52'10_“1-45’10,3 4.50 2.05 2.42 0.0321-5% 1593 4.85 10.20 0.177

12 0.4082 0.18387 0.1460 65.07 2.37 2.65 0.042 0.1624 17.05 5.62: 11.19 0.238

0.5000 1.891 2.008i 6.18 3.28 2.82 0.081 2.276 | 20.11 7.7’?’| 11.8% 0.4561

0.5346 3.2656 | 3.48 ‘ 6.38 3.63 2.65 0.097 3.93 | 20.35 8.61 11.19 0.545

8
7

6 0.5774 5.264  5.60 | 6.43 3.97 2.33 0.134 6.30  19.86 9.40 9.82 0.637
5 0.6326 7.748 8.21 | 5.98 4.12 1.74 0.113 9.16 | 18.27 9.78 7.85 0.637
4 0.7071 10.007  10.47 i 474 3.73 0.94 0.06811.32 | 13.18 8.85 3.95 0.383
3

0.8166 10.544  10.75 1.93 1.91 0.06—0.04211.01 = 4.54 4.52 0.26—0.235

2.4 0.9120 9.332  9.37 | 0.45 0.84-0.31-0.075 9.35 | 0.28 2.02-1.32-0.421
2 10000 T.794 7.28 —0.86-0.32-0.46—0.074 7.55 ~3.13-0.76—1.95—0.416
1.6 1.1180 5.788 5.67 —2.04—1.49—0.51—0.040 5.45 —5.90—3.52 —2.16—0.222
1.2 1.2910 8.602 3.40 —2.93-2.46—0.48 0.018 3.23 —7.79—5.85-2.04 0.103
1 14142 2570 2.49 —3.17-2.77-0.45 0.045 2.36 —8.196.56-1.89 0.252
0.8 1.5811 1.655 1.600 —3.28—2.94—0.40 0.065 1.518 —8.29 —6.96 —1.70 0.367
0.6 1.8257 0.9140 0.855 —3.16-2.88—0.36 0.071 0.842 —7.92 —6.81 —1.51 0.399
0.4 2.9361 0.3872 0.376 —2.78-2.52—0.32 0.063 0.359 —7.20—6.21—1.34 0.354

0.2 3.1623 0.0891 0.0870%2.40-—2.16—0.23 0.043 0.0838ﬁ6.09—5.12_ 1.21] 0.242

Notice: Cw ﬁ;#K(l 2)=—X/mpa*V? C,,,:Cw A1), r=ridretr
TABLE 2. VERTICAL FORCE AGTING ON A SPHERE

2 v ﬁ_afzj 1/4 i B= 1/3
T e ¥ vgf “/ﬁ o * pad | :

i N C./B r><100| %100 xworaxlOO Cz/r] 7x100 x100 xmora)fqu
18 |0.3333 | 4.31 4.46 2.9 2.05 0.87 0.011 4.71 8.56 4.85 3.67 0.059
12 0.4082 | 5.08 5.26 3.44 2.37 1.06 0.014 560 10.14 5.62 4.44 0.079
8 | 0.5000 8.02 8.41 4.9 3.28 1.65 0.027 9.21 14.88 T.77 6.96 0.150
7 |0.5345 8.60 9.06 5.30 3.63 1.64 0.032 9.95 15.70 8.61 6.91 0.181
6 | 0.5774 8.75 9.23 5.45 3.97 1.45 0.037 10.10 15.71 9.40 6.10 0.210
5 0.6326| 7.8 8.20 5.13 4.12 0.98 0.032 8.91 14.10 9.78 4.14 0.180
4 | 0.7071| 5.13 5.34 4.01 3.73 0.24 0.777 5.65 10.08 8.85 1.03 0.202
3 0.8165| 0.44 0.45 2.08 1.91—0.61—0.240 0.47 6.34 4.52-2.55 4.370
2.4 | 0.9120 —2.64-2.63—0.35 0.84-0.97—0.162 -2.55— 3.43 2.02 —4.11 —1.342
2 1.0000 —4.47 —4.40—1.60 — 032 111 -0.112-4.19 — 6.34—0.76 —4.70 0.873
1.6  1.1180 —5.71—5.50 ~2.75 ~1.49 ~1.15 —0.050 ~5.20 — 8.9 —0.35 —4.84 —0.629
1.2 | 1.2010 |—~6.18 —5.96 —3.58 —2.46 —1.07—3.58 —5.52 —10.68 —0.59 —4.53 —0.299
1 | 1.4142 |—6.08 —5.85 —3.80 —2.77 —1.01 —0.021 —5.42 —10.93 —6.56 —4.25 —0.116

0.8 |1.5811 |~5.75 —65.58—8.87 —2. 94 —0.92 —0.005 —5.12 —10.88 —6.96 — 3. 89 —0.028
0.6 ‘ 1.8257 —b5.23 —5. 04 3.70 —2. 88 0.83 0.008 —4.70 —10.26 —6.81 —3. 50| 0.047
0.4 | 2.2361 -—4 56 —4. 41-8.23-2. 52—0.73 0.013 —4.13 — 9.21 —6.21 —3.07, 0.074

0.2 l 3.1623 —3 80 —3. 70 —2.77-2. 16' 0.62 0. 011 3.561 — 7.69—5.12—2. 63 0. 0625
Notice: C. ;ifﬁ*LI 1; 3)=Z/zpa*V* CZ_CO(1+;) re=rgbretrs ma
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circular cylinder. The known first approximate values are much closer
quantitatively to the accurate ones than in the case of the cylinder.
With respect to the vertical force, the ratio of the second approximate
value to that of the first one tends to be constant at the both limits
of the speed, i.e., at zero and infinite. Meanwhile, the ratio between
the first and the second approximations in wave-making resistance reaches
the maximum just before the hump (V/1/gf=0.55), the mininum at about
V/V/gf=0.3 and increases as the speed decreases. This relation is given
by the approximate expansion
O, 3 9 e
Rt (HZF )+

0

83° ( 18 Ny = oaf 9 2)
2= 1+=2F SR 14+SF 27
3F‘*‘(+4 )+4ﬁ(+2 (@)
for the sufficiently small F=V/1/gf, Froude number.

Finally, it is interesting to see the source distribution around the
sphere in this stage of approximation. Fig. 3 gives a glimpe of this
relation.

&3 Numerical evaluation for a submerged spheroid and its comparison
with model basin experiments

The present author made some numerical evaluations for a submerged
spheroid and conducted resistance experiment with a spheroid so that the
result of the evaluation could be compared with the experimental result.

The calculation in the second approximation was found to be far
more difficult than that in the first approximation. The tedious work
involved seemed worthless at the thought of the errors that might pos-
sibly be made during the long process of ecalculation and the dubious
value of the conclusion drawn from the calculation. However, as the
integral procedures progressed, it was found out that all that the author
intended to express could be expressed by the generalized forms of P,
and @,, the functions employed by HAvELOCK and others. It is expected
that the closer examination of these functions would contribute to the
development of the theory of wave-making resistance also in other respects
than that taken up in this discussion of the author.

It is usual with the calculation of wave-making resistance that it is
carried out over the very wide scope of variables. In the caleculation in
this study, however, the speed range is so limited that the result of the
calculation only shows a general tendency. This is for the reason that
the amount of the calculations involved in the author’s case is several
times as much as that in an ordinary case.

3.1 The notation and the equations employed in the preceding section
will also be used in this section.
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The wave-making resistance R,, vertical lift Z and the nose-down
moment M,, all working on a submerged spheroid are given in the second
approximation by the following expressions:

R 4o 2 8a g o
o =—— ==& (BN (1 L IBIM()} NP — X (B BIM() N
= 7 = g (B L 2BIMADLNG = L C(BY BLMCDNT (28)
=L = (B (1+2BIMD) NSO~ (BYBIMER.NE® (29)
dmpVie* 9" i 15¢" T i
=E%:3%B?(B}—B?)M(il¥){1+2BSM(2’J?)+B}M(1II}}
— (BN (14 2BIMGR) (30)
where
a=ke=ge/V:,  y=2&f, c=Va*-b

V denotes the velocity of a uniform stream, 2a¢ the length of the major
axis, 2b the length, i.e., the diameter of the minor axis, and f the
distance from the spheroid’s centre to the water surface.

Also,

2m

YM o+ 1 ™ o
Now="1¢ dt f bk, ko t) e/ b, k™ cos™ tdx
-7 [}
x €08° t+Ky+ ui cos t
& €08’ t—xy+ ui cos t

¢v:_]1(v+3/2)l“ (ke ]cot t) an
(kccost/2)" 2

Further, to write M by N we have

h(k, k4 )=

MED=—2NE>,  MEH=—MED)=—25N§"
3¢* 3¢? ;
2 2 BL)
M(;I?):EaNEI’D; M(:H)ngNﬁl’I' J
. &(dP, 'dQ o AP} | dQ! /APl d@i
B8 [0y ), Bi=2¢¥ %21 1), Bi=2¢( 22 %t 32
1 2(\dy,f dv =0 du) : C(d;- %) ©

All of the above equations are general expressions, the first approxi-
mation for each of which is given by HAVELOCK.

As regard to the resistance and lift, his results correspond to (28)
and (29) in which the second term and the second factor in the braces
of the first term are neglected.

As for the trimming moment, his result corresponds to (30) in which
the factors except unity in the braces of the both terms are neglected
[A-9]-[A-10].
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If we induce the following signs for calculation

I =g @ [ (e —da [(da'+4 [ (dey

(33)
r )(“)_7 .} (dar)t—8er f (da)*+24a f da)*—24 f (da)J
we may write like
V(e cos ) =721y Sin (2ax cos 6)
kcosd -

¥ry(ee o 6)ry(a cos 6) =720y S (2ax cos 6)
kcosf

If we define the following functions, the necessary integral can be
expressed by calculating them by (31) or (32) as required.

Oi}’(a;,t):lim 1) f f cos""* u exp (—«t4ixz cos ) doe
> t0 & cos® u—1+ ui cosu

(35)

OF(x, t)= lim _f f cos™"* u exp (—«t—ikx cos ) d
nr+0 4or e cos® u—1—picosu

x,1>0 n: integer

Then from the above we define the functions P and @ so as to obtain

P,(2,t) =1 [00(x, ) — 02 (. )}
2
(36)
Q.(x, t):- 0 (@, £)+02(a, )

Besides, we write as auxiliary functions

on = ( )" -k COS’ cos .
q2n+1(£c = f du f t ,,+au o (k2 cos w)dx (87)

then we find by carrying out the differential the relation

2P . %pn:p gr B g

n-< n
ot

n
ox 0 ox*

(38)

'ﬁianQn—l—i—'qnﬁI y %Qn:Qn—l"i_qn—ﬂ ? %Q Qu+ qn 1
ox at ox®

At first we write
1 1 37D 18 0 2 1 i
N LD =28800 T (a)[P_q,(za,ry)j~T[P,IJFP_l—;PmL(F(PI—PI)} (39)
NED= — g, N = 288001 (@) [P_o(2t, )]

22 i_ _i 1 0 E _i — 0
=90 P.—2(P.+ 2P )+ 5P, S(p—Py)] (40)
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In the above equations the variables of P means 2« and v, and the

suffix 0 means a=0.
Next, if we put

Gow— ‘;7 [ " du f " o (ke cos )W, (a cos ) cos™ tdrdt  (41)
o ® .(J

the remaining integral may be expressed like

NOU= —1440° T “(cr)[- 9 {Q,4(2a, o) Lg_ (2 "’)H
o 2

= —6g0— 2,650 385 (g a2 [[q da—~2 [ de]
o 5 al [24

_%[_Q_s*l“Qig =Sl Q + (Qu 0 :| (42)
In the above, " means @,(0, ).
N§D=,GS 1)+ G 72 [qﬂda— 1 f - dcr) fqld“
- [@ﬁ i~ 20+ 5@ | (43)
434 44 [d¢ o

Niv=,620+ 2,601 2 o o2 [ o (aar+2 [ [ [ a0y}
00 e f i 2 fo
JiQI—_(Qﬁ &)+ — Q-] (44)
e I

~90[Q.— (@ + 1)+ 20— @] (45)

Now the problem has been reduced to P and @. These P and @ are
what are generalized of those which HavELock [A-11]-[A-12].-[A-13]
defined when he calculated the wave-making resistance and wave profiles
of a ship with infinite draught. It must be noted, however, that the func-
tion Q meant by the author is quite different from that defined by HAVE-
LOCK. O, defined by the author nearly equals @, defined by HAVELOCK.

We cannot dwell upon the characteristics of these functions. Their
important characteristics are as follows:
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NP, +(n—1)P,_ s=2UP, o+ P,_)+2(P,_++P,_s) (46)
where all variables are (z,1),
@, +n—1)Q, .=24Q, .+Q,_)+2(Q, ;+Q, o)
+26(q5 -2+ )+2(q, 1+ qas) (47)

An equation in a form similar to that expressing @, may be obtained
also with respect to O,.

Also
e B 9y @
quHl = t qﬂn-\-ﬂ 3 aﬂ? (Irz Ot Qn+-l
(48)
a 2 q 4 (=) I'(n+3/2)
n+2 2n+1 2tL/’JT I-‘(?’L—i—z)
For integral expressions we may write
P, (@, t)=R(—i) f e"p(‘” H) vy, (49)
V=1
" - g u*\ du
O (2, t) f exp (tu*— xu),\ e —1+§),u,3, (50)

Both L, and L. are 1ntegral paths. The former is the one from the
origin to a point in infinite distance via the imaginary negative axis,
and the latter is the other from the point x/t and to a point in infinite
distance above the positive and negative axes. For O,, O, is given here
to represent it because there is no uniform expression for O,. For other
functions we may give, for example,

O: ‘}:é- exp (tu"—axu)

IL+L2

du
V1+u®

Various expressions may be considered for expansions and asymptotic
expansions. We shall give here only the asymptotic expansions which
are actually employed in our calculation.

(50°)

1‘ t R —a\y 1,/'7T8 el 1 _ _3_6‘4_ 1503 o 51
il =R Z) -m/ZI: T3 + 4t* i 8t? = :l i
i » 2
S 200( Fk 4c,,) =t 215
g B 58 5 (1 35
. (200) L32 Fgt 4C,\4 o)t 3202} ,
ol g ,(u+1) LD+ 2) (51)
3 (201,)3 L 128 8 6
g (;-l—l)u 63 (1, \, 281
* { s }+ 3zcgk4+’>+ ]

4C, 128C}
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The function @ is calculated by putting (O—P), for O is a monoto-
nous function having the following asymptotic expansion at a point away
from the origin. The expression given is just typical one, for there is
no uniform expression for O either.

0" (x, t) =~ — ; ; (AP 4+ B) (52)
Ap—( Y7 (o At Do (8
T \a/ T (ut2)(n—2p—1)I\ t
@ (n+4), .£\2n+4_(ﬂ+2)n 3t 2n+2 ’
BP=S e W(x) (52"

#77(9[3;)5’”‘4 1:" Qq’+4)n—u. i
]/1_'__+_x2/t27'::0 (%—#)! p LL(P)

where

T S
V14(tx%)

P, is Legendre function of u—th order.

r

3.2 In the numerical caleulations, at first P,, O,, g, ete., were caleu-
lated by employing the above-mentioned expansion and then what was
obtained was put into the equations as required.
The two cases of f/c were chosen for the calculation for the ellipsoid
like a/c=1717/4. They were
3

f=g. F=ge

When f is sufficiently large, or « is small the required value may be
obtained by calculating series directly from the series expansion.

However, in the author’s calculation an asymptotic expansion was
employed. The results are shown in Table 3, and Figs. 4 and 5. We
see the general tendency that each curve is steeper than that in the
first approximation.

The wave-making resistance was found to increase remarkably be-
tween F—035 and 0.40. The increment was so large that the author
checked the calculation but no mistake has been found. The accuracy
of the asymptotic expansion is low in a range beyond F'=0.4. An error
in each function is in a small percentage. Consequently there may be
errors between 10 and 20 per cent in the final value obtained.

In any case nothing can be said for certainty concerning the result
of the calculation before similar calculation is made for many other cases.
The tendencies shown by the results of author’s calculations may be those
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TABLE 3. WAvE RESISTANCE, VERTICAL FORCE AND TRIMMING
MOMENT ACTING ON A SUBMERGED SPHEROID

— " | | o v
(7elge F=1/v2a Cpox10 | Gyx100 | Cpyx108 | C.x10° | Cp x100 | Cpx108

2.0 .4330 15.8 38.8 211 | 210 20.6 | 18.%

2.4 3953 | 6.98 18.2 2.16 2.81 10.7 10.0

2.8 . 3660 1.725 4.69 182 | 2.43 ‘ 1% . | i

3.2 .8423 .295 287 1.46 | 1.74 067 | 073
8.6 3998 670 Lo74 1.25 ‘ 1.42 —.470 | _— 469
4.0 .3062 1.057 .965 1.20 1.26 | L0419 | L0261
4.4 .2919 | .893 1.02 1.18 1.24 442 458
4.8 .2795 .458 .593 1.16 1.20 427 | 436
5.2 .2685 | .130 1912 | 1.09 1.15 199 | 202
5.6 . 2588 .0247 0279 | 1.4 | 1.09 | 0133 .0138
6.0 .2500 . 0468 .0361 1.004 1.04 | —.0406  —.0406
6.4 2421 0739 0704 | .979 1.014 —.0182 0126
6.8 .2348 L0645 . 0684 .962 .996 L0201 .0211
7.2 .2282 .0334 L0381 | .945 977 .0261 .0270
7.6 2291 . 00946 L0115 .928 L9590 .0138 L0142

(f/Tr:i_—(;/g) F=1/+2a C"’u x10¢ Cpx10% | C;, x10° C:x10% | Cp x 104 ‘ Cyp x 104

2.4 .4564 10.1 21.3 1.04

1.08 10.9 9.51
2.8 .4226 5.87 13.4 1.22 1.67 7.65 7.02
3.2 .3953 2.91 7.165 1.18 1.56 4.46 4.90
3.6 .8727 1.05 259 1.021 1.42 | 1.92 1.84
4.0 .3536 .193 .537 .873 1.15 .487 472
4.4 .3371 L0576 .0022 764 943 — 0699 | —.0672
4.8 .3228 L1625 L0527 701 .817 —.0146 | —.141
5.2 .3101 .232 186 | 667 .48 —.0469  — . 0436
5.6 .2988 226 230 .646 709 L0520 .0539
6.0 L2887 .160 .184 .627 .680 0910 1026
6.4 .2795 .0852 .1065 .609 664 L0786 .0793
6.8 2712 L0321 .0438 .590 .630 .0450 .0453
7.2 .2635 .0073 L0110 570 604 .01438 .0145

which are found only with a submerged ellipsoid. However, if they are
general tendencies to be seen with most submerged bodies, the theoretical
values of the wave-making resistance, the vertical force and the moment
exerted on them, obtained so far by the first approximation, need to be

re-examined from the view point of the boundary condition on the surface
of each body concerned.

A term which gives a large correction value is the last one in Eq.
(28). The term is there due to the fact that the source distribution is
asymmetrical upwards and downwards.
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3.3 In order to make comparisons with the above results, towing ex-
periment was conducted in a model basin at the University of Tokyo
using a wooden ellipsoid. The particular items of the ellipsoid are:

Major length (2a) : 2.062 m
Diameter (minor length) (2b) : 500 mm, VaF—bB=e¢: 1m
Displacement (V) : 2699 m®
Wetted surface area (S) : 2.543 m*

Turbulances were stimulated by pins having the front area of 1 mm®, each
of which was planted 5mm apart along the location 5 per cent of the
over all length of the body from the forward end. It seems better to
have had more pins. A sword 118 mm long, 18 mm wide and with an arc
section was fixed on the ellipsoid. The sword was suspended by a frame
and resistance was measured by means of a magneto-striction dynamo-
meter.

The experiment was conducted at three different depths of immer-
sion. They were:

f: 1.20m, 1/2m, 3/8 m.

The values shown plotted in Fig. 6 are those obtained by reducing
the resistance of the sword which was measured separately. The resist-
ance of the pins planted may be ignored. The effect of the finite width
of the model basin is about 3 to 3.5 per cent with respect to friction re-
sistance, and approximately 3 per cent with respect to wave-making re-
sistance. In general the experiment was difficult, the resistance value
was large and unsteady. At f=12m laminar flows seemed to remain at
low speed. No laminar flow seemed to remain at f=3/8m. It seems that
the form factor K from the formula of HUGHES may be chosen in the
neighbourhood of 0.43 to 0.45 if an average line is assumed to be drawn
in the neighbourhood of Reynolds numbers from 2.8 to 3.4x10°% If the
curve of the wave-making resistance calculated by the first approxima-
tion is added to the line of K =0.45, the caleulated value seems to be a
little smaller.

At low speed the points at f=0.5m are found generally higher than
those at f=1.2m. But it seems possible for us to say that when the
Froude number is below 0.24 the curve at K—=0.45 can be regarded as
average. If then the value of the wave-making resistance obtained by
the second approximation is added to the above curve we obtain the line
on the right side excelled high above in Fig. 6. We see from this that
in experiment the last hollow seems rather nonexistent. The curve of
the experimental value is close to that of the second approximate value,
but the slope on the former is more gradual than that on the latter.
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If the first approximate value is taken, as can be seen from Fig. 4,
at f=3/8m from F=0.2 to 0.24 the experimental points are found be-
tween K=0.50 and 0.55. Since no wave-making resistance is expected
to be found there, we must consider that friction resistance and the form
factor, too, are affected by the water surface when the immersion is very
shallow.

A similar tendency is found if the curve of wave-making resistance
is added to the curve of K=0.55. All those tendencies show clearly a
great difference between the calculated and measured values. So far
no explanation has been found for it.

There have been published few experimental results with regard to
submerged bodies. The author waits for the publication of the data of
the similar experiment to be made in the future by other researchers.

3.4 The following conclusions may be drawn from the above discussions.

(1) The second approximate value of the wave-making resistance
theoretically calculated differs greatly when compared to the first
approximate one. (See Fig. 4)

(2) Both the vertical force and trimming moment show more ex-
ergerated humps and hollows in the second approximation than
in the first. But this tendency is not so big as that found with
respect to wave-making resistance. (See Fig. b)

(3) According to the experimental result, in the speed range in
which wave-making resistance is hardly found and which is not
a transitionary range, the resistance value increases as follows
when compared to the friction resistance value of HUGHES :

at f=12m : K=0.40~0.45
at f=056m : K=0.45~050
at f=38m : K=0.50~0.55

(4) The wave-making resistance value measured in the experiment
may be said to have no last hollow. The value is generally in
agreement with that of the theoretical second approximation at
the speed where wave-making resistance starts to be observed
and at the speed just before the last hump can be seen. How-
ever, there is a very great difference between the calculated and
measured values. The reason for this eannot be explained.
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&4 General expressions for the wave-making resistance of a submerged
body of an arbitrary form

One of the major problems in the theory of stationary wave resi-
stance is how to satisfy the surface condition of a dody. For this pur-
pose various attempts have been made. The present author published a
report on the results of several calculations with respect to a submerged
sphere (§2) and a prolate spheroid (§3). In this section discussions will be
made with respect to a submerged body of an arbitrary form. According
to his theory the surface condition of the body can be fully satisfied, if
we do not mind the tedious procedures involved. As for the water
surface condition, however, it remains linearized. The difference in the
theory and experiment discussed in §3 shall be recalled in this respect.

4.1 It is assumed that a submerged body advances in one direction
at a uniform speed. A righthand coordinate system is employed in which
the z-axis is taken vertically upward, the z-axis in the direction of the
body’s advance and the origin is fixed at a point within the body which
is at the f-position below the surface of water. Then the veloeity poten-
tial may be, as well known, given by

Uz, y, 2)= V&, ¥, 2)— 21W ‘ [ “‘ [ “B(x, Q)hl, K 6) €XD (—2F e+ ixi) didd
= D (53)
where V is a function having its singularities inside the body only and
% is deduced by the following equation:

Vi, v, z):zlw i i f “B(x, ) exp (—rz+ixa) dedf, 2>0  (54)

and further
Rk, ko, 0)=(x COS® O+x,+ pi €COS 6)/(x cos® @ —r,+ pi cos 0)
k,=g/(velocity)®, @=xcosf-+ysinf

Our problem is to determine V so that it satisfies on the body’s

gsurface the condition
o V]joy=—oxfoy (55)

with v as the outward normal of the body’s surface.

Now we are to solve the problem of this boundary value first by
setting a system of ortho-normal functions on the body’s surface, over

which to expand (55) to deduce a simultaneous equation, and then by
successive substitutions step by step until the solution is obtained.

4.2 We shall first consider a system of ortho-normal functions [A-15]
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{¥,} which is harmonics on the body’s surface S and the inside V. which
satisfies the normalized orthogonal condition

JJ e 5 vnds=[ [ [erad. v, -grad.pdr=s,,, [ 1" =" (55
4 v Ye 0---m ‘l— m

Actually this can be done in the following procedure.

For example, we take homogeneous spherical harmonics and put it
like

Hozx, Ifl:*z, _E{_,:Q’;Z_ ; (y2+zﬂ)’ Hi: —3.’132, H;: 3 (z’&_yz)

(57)

where odd functions in ¥ are omitted on the assumption that the body

is symmetrical with respect to the x—z plane.
Then putting

By = f /=, aau H,dS= f f [ grad. H, grad. H,dr=h,,.  (58)
5 ¥y

By Biggivs » s R,
Dyl g, =vn v wenee s D= i h_m
| 2 T
| A T (59)
and if we define I', ,, as a conjugate element of Roois
Vo= AL olly+ 'y +- - -+ T, H, VD, D,_, (60)

then it can easily be found that the condition of (56) is actually satisfied.

Now if we take the origin at the body’s centre of gravity and as-
sume that the body is symmetrical upwards and downwards as well as
fore and aft, ¥, will be like

Vo=V 4, v=—2/V/ 4, %:(mh.wzﬂ) Ve,
2 /i } (61)

'4"3: Hgmz/l/hsg ] \ib‘-}:(hﬂEH;_k‘ldH})/thg(hggh;_;_hgg) e

where . is the displacement volume.
We shall now put as f, the function which is equal to —ay, [0y on
S and regular in the domain V, outside the body. That is,

afn/a” = C‘}‘P'”/a‘.) (62)
and expanding on S like
AVijoy=—23 A (3V,[dv) (63)
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from the definition of f,, we have

V=3A.fn (64)
in V..
On S, if we put
d 0
Bu=[ [ 125, ¥u05== JESas (65)
we may expand like
V: vAﬂBTL?’R’\P‘TH. (66)

Next, in order to obtain an expansion for ¥, we first make Fourier
transformation of (54) to get the following equation:—

Bk, 6) = 1 ff 6 a;: ) exp (kz—ix) dxdy

Considering the regularity of the integrands we may write from Green’s
theorem

Ve, 0)= L [[(W v 9 exp (ez—ixi) dS (67)
4r. v \ v
Consequently, substituting (63) and (67) we have
“B(Kr 9): = 4‘—-‘ AIK(BHTTLEIIL+EH) (68)
in which
E,(x, 6)= 417‘_]‘[1#“ 68 exp (k2 —ikw) dS= i ff 8 exp (kz—ik@®) dS
(69)
4.3 Since the condition on the body’s surface (b5) is given by
= S"j =4 f f h‘“ 7 expd(z—2/) tie) dedd (55

if we multiply the righthand and lefthand sides of the above by ¥, and
integrate them over S, we may write

cn:An+2f“f°°21-h-e-ewaudxde (70)

referring to (63) and (69). In the above

6= f f Zf v.dS (71)

E, is the conjugate complex of E,.
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When we substitute (68) into the above, we obtain a system of infinite
linear equations. It is not easy to obtain the solution for them, but it is
easy to raise the degree of approximation by successive substitutions.

First referring to (61) we write

Cu='l/f-:s C=C,=C=C,=0 (72)
and for the first approximation if we put
An:Cn! AJ.:Aﬂ:"'An:O (73)

we may write for B from (68) as the first approximation
B(x, )= — A(E,+ X B, E,) (74)

and substituting this into (68) we obtain as the second approximation

A=C\[1+ Mo+ 2 By, u M, ] } -
A, =C[ My, o+ 2 By, uM,, 0], n=1,2,3,4
in which
M, =M, =2 f B f “hELE,e ™ dedd (76)

—am 0

4.4 In the above case wave-making resistance, vertical lift and nose-
down trimming moment are given by the following equations respec-
tively :

R=2pi f - f "] 'k cos Odwdd

—-m 0

Z=—09p f i f” h| B [*e"*xdrdd (T7)

—m 0

My=4vrpRe{ L %} —2pi f A f 1 % e iudieds
0p  Jp=q-0 op

—aT 0
where
p=rcosd, g=«sin @
We then put like

M2, =2 [ [ThE, Be- e cos b= T2,

- 0

M®,=2 f " f “hBE,e ™ dedo =12, (78)
- 0

U =2i [ [“hELB,eudedo =2,
- 0 Gp
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If we substitute the approximate value mentioned in the preceding section
we obtain as the first approximation

R/P: F(I +B(IU)QM}?3
_Z/P:r(l"l‘Bnn):Mé?l)) (79)
— M, [p=r (14 By)[(14By) M, 1+ (1+By) M%)

In our ease, where the body is symmetrical upwards and downwards
as well as fore and aft, the second approximation will be as follows:

R/p=p (14 B[ M+ 2(1 + Bon) Mo o M35 -+2(1+ Byg) My, s Mis]
= Z/P = F(1 G BO(J): [be3+2(1 +Bnn)MJ,nMé?3+2(1 + Bsa)M),sMB?:;]
—M,/p=r(1+B,)(1 + By )M, 1+ 7 (14 By [ M55
+2(1+4 Byo) My, o M3+ 2(1+ Byy) M, s M 375

(80)
From the definition of E, we may write

B [ otemsorin, e it
% B= gy fff SR (il e
4;7'/1) f f f (z cos —1x) exp (kz—ixw) dr
(81)

The first equation of (79) concides in form with the so-called inter-
polation formula by HOGNER [A-14].

As can be seen from the definition, in (65) and (66), B,, in (79) is
the so-called inertia coefficient or a virtual mass coefficient, which HOGNER
substituted by the coefficient of an ellipsoid [A-16] having as its axes the
length, breadth and the draught corresponding to those of a ship. His
approximation seems appropriate because it is difficult to find by actual
calculation such a coefficient with a ship of an arbitrary shape. The
result does not seem to be much different if we take for simplicity the
coefficient of a rotatory ellipsoid having a similar displacement-length
ratio. That coefficient can easily be calculated if the equivalent source
distribution is known of the body. An example is given in Fig. 7.

It is well known that the above formula for resistance gives an
interpolation formula for a displacement boat and a ship of pressure
distribution type. Fig. 8 shows an example of the calculation with re-
spect to the formula. (In the calculation we employed the coefficient of
the virtual mass of a rotatory ellipsoid with the same displacement-
length ratio as that of the ship considered). The result shows that the
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value is always larger than that obtained by MicHELL's formula if the
breadth is finite. WIGLEY has pointed out this fact showing a similar
quantity. [A-17]

The third equation in (79) is the same as the one which HAVELOCK
[A-10] considered deducible for a body of an arbitrary shape from an
expression for a rotatory ellipsoid when he calculated the trimming
moment of a submerged body.

4.5 In the preceding sections we have been able to deduce theoretically
HoGNER’s interpolation formula and HAVELOCK’s formula of trimming
moment.

In summary, a solution has been found for the wave-making resi-
stance of a submerged body of an arbitrary shape by employing a system
of ortho-normal functions on the body’s surface and by a method of sue-
cessive substitutions. It has been found, too, that the value of the first
approximation agrees with that obtained by expanding the equations de-
veloped by MICHELL and others.

The value of the first approximation caleulated by the present
author’s method is always a bit larger, as was pointed out by WIGLEY,
than that obtained by MICHELL’s equation.

In low speed this augmentation of the resistance seemes strange, for
this fact contradicts the results obtained from the theory of INUL
The author cannot explain this contradiction. However, it is conceivable
that in low speed the form, especially bow form, of a ship affects the
wave making property decisively, but such fine form characteristics are
not taken into consideration in this treatment. This negligeance might
have been the cause of the contradiction.

As for the virtual mass coefficient, the result does not seem much
different whether we employ that of an ellipsoid having as its axes the
length, breadth and draught corresponding to those of a ship as HOGNER
employed in his approximation or that of a rotatory ellipsoid having a
similar displacement-length ratio.

Chapter 2 Effects of Finite Amplitude on the Wave-Making
Resistance (Two-Dimensional Motion)

§5. The wave-making resistance of a submerged circular eylinder

In the theory of wave-making resistance of a submerged body the
condition of the water surface has always been linearized and researchers’
efforts have been directed toward the improvement on the approximation
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of the body’s surface condition. Judging from the experiment and the
result of the calculation the author carried out on a submerged spheroid
(83), a great effect was clearly observed of the finite surface disturbance,
especially when the body’s immersion was shallow.

Already NisHiYAMA [5] has discussed the effect of finite wave-height
upon wave-making resistance. He treated the problem only from the
energy of regular waves in the rear of a body. There remains the
problem that how velocity potential would change according to whether
the water surface condition is linerized or not.

The author has taken up this problem of the water surface condition
to study it in the limited terms of a second approximation with respect
to a two-dimensional submerged circular cylinder. A similar treatment
is possible in regard to a case of an approximation of a higher order or
a three-dimensional body, but the author preferred a two-dimensional body
simply to avoid analytical difficulties.

5.1 We shall assume that there is a cylinder at an immersion depth
¢ under the surface of infinite upper stream, and a uniform stream and
the cylinder’s radius are taken as a unit. The origin is taken in the
centre of the cylinder, the z-axis in the direction of a stream and the
y-axis directly upwards. The elevation of the water surface is expressed by

n=y—c¢
Like in the perturbation method, a stream function is given like

V(@ y)=y+ Vi@, y)+ ¥, ¥) (82)

where v, is assumed to be of higher order than .

As for the water surface elevation, if it is assumed that ¢ is —c¢
at infinite upper stream, since Y is a constant on the free surface we
may write

(@) =12, )+ (@), (@, €)+ (@, €)

where ', is considered as the second order term.

Hereafter a constant variable ¢ will be omitted in the equations, and
suffixes # and y will denote partial differential. Then we may now ex-
press as the first approximation

n(@)=1v() (83)
and as the second approximation
(@) =vy() + {Vo(@)ry, (@) +Ve(2)} (84)

On the other hand, assuming that pressure is zero on the water surface
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we may write from BERNOULLI'S equation
o1(@) +- (43, V¥ ) = (85)

in which ¢ is a constant for the gravity in this unit system. Taking up
to the second term

90(@) =1, () + {Vas@) H 4 @@ - L@+, @) (86)

Then putting
g=(1+79) (87)

where 8 is regarded as a correction term for the equation expressing
the relation between wave height and its speed. Then combining (83),
(84), (86) and (87) together, we can write

(@) ="y, (%) (88)
Yoy (%) — o) =¥ () + () (89)

and
X(SC):v‘h(ﬂf)‘r”w(w)—‘h(x)%w(@+%( 12() — 94, (2)) (90)

Eq. (88) gives the linearized water surface condition hitherto in use
and (90) gives the condition for the second approximation ..
Now corresponding to (82), we denote a complex velocity potential as

F(@)=—2z+fi(2)+fz), z=w+1y (91)
and assume it possible to have a Fourier’s expression as follows:
Filey=—4 f " ¢t P () die—1i f O
g 0 2e=y=>0 (92)
fule)=—i f e Py(x) dow—i f e~ -2hQ. () dic

0

Then for a stream function we may write as follows:

Vy(x, )= ?_li{fl(z) —F@)
= ~% f " (PR e+ Qux) -} e e

3 [T @@ e
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If we use for simplicity the sign

T\i.—fifwdxei""’
2

we may write

F (o 1)) =~ ; (Pie) e+ Qi) )

R{‘;’_(m’ y)}:— { (;c)e 4@, (If) RS ON}

x>0 (93)

This conjugate complex value is taken as a minus value of x. This holds
true throughout.
Using the above functions, (89) may be transcribed like

Qi(-‘f—):‘m-!—v P;(T)
o=y
If we introduce here an artificial friction coefficient to eliminate un-
certainty in the integration and write
Q) ="T1 e B (94)
7
This is the water surface condition hitherto employed. When this is sub-

stituted into (93) and partial integration is carried out we immediately
obtain the following equation:

IO DL 0 Ll T O W 0 210 Lk
*r e S e (95)
Sl == 2B gy, )= Rl
4 v IC_'Y_"M?: vy ic—n/—ﬁ’b?:
Next, Eq. (89) is transcribed like
Q=rtrtel pro, BB BXoe (96)
== (k—y—pi)*  e—y—p

where & {x} =X(«)
In the above, if P, and @, are assumed regular, X(x), too, is regular
at x=r, as can be seen later. Consequently & must be zero. This means

that in the second approximation the relation between wave length and
and its speed remains unchanged. Then we write

Q ( ) K "Y l‘I.L'L T -( ) 2X(IC) e’w- (97)
—"/—-y,’!. K—f— pl
Now if in general
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5 {f}=F(x), {9} =G(x),"+ x>0
F)=F(—«), G)=G(—«),-+-£<0
since we have

F{f-0)= [ FQ) Ge—du+ [~ (FQ)Gle+2)+G) Flet-2)d2

we may write employing (95)

e B K——i (k—4)
X(x) e = f if:ﬂi}(:)ﬂ_}@ e —2) Py() Py(x—2) d2

= {_37'-’_(,{2-4-22—}—2!{)} _A(k+2) P2) }TI'(';_Fj)G—E}.c di (98)

(A—y+ pi) (e~ 2— oy — p)

‘0
5.2 In Eq. (92), if we assume on the other hand that Laurent’s
expansion is possible for f, and f. and if we write

fld)= 3 Ay 2+ I Byo(—iPhie”
ﬂ;I n:l } ( 99 )
Fld)= T i1, 2+ T B, (—iyia
=1 n=(0
then between these functions and (92) there is the relation expressed as
Pl)= % 4,5, P)= 3 Ay, (100)
n=0 nl n=0 " nl

Bl,n:% f " g-in-21Q (V™ dlk, BM:% ” g-ins-2eaQ) () dic (101)
30 .

0
Now, the boundary condition on the cylinder’s surface, i.e., on |[z|=1
means that a stream function becomes a constant on this surface. We
may divide this condition into two and put
— —constant
¥+ } (1 02)
Y, =constant
When this is done, we may obtain from (99) an expression for the rela-
tion between A and B coefficients. And if the result thus obtained is
rearranged by employing (100) and (101) we obtain

Pl(x)zl—fw(mK(Ax)e‘mﬁ da

0

(103)

P ey = f T K () e *2d2 (104)
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where

I ()
0= 2 n!(n+1)!

5.3 To obtain the required velocity potential from (99), (100) and
(101) is equal to obtain P, and P,. P, may be obtained from (94) and
(103), and P, from (97) and (103). That is, when (93) is substituted into
(103) we have

Pl(x>=1—f TAEY p ) K(ak) e d2 (105)
2 A—ry+ut
and P, may be obtained from this. In the next step if we obtain X in

(98) from this P,, substitute what has been obtained into (97) and then
substitute (97) again into (104) we have

Pye)=2 [~ XDKG) o2y gy [TAFV=H p )y K(a)et2dr  (106)
A—y+put v A=yt
P, can be obtained from this.

As for Eq. (106), since it has been given by HAVELock [A-1] it is
rather a simple procedure to obtain a detailed solution.

However, in view of our object of making a qualitative comparison
between the effect of the cylinder’s surface condition and that of the
water surface condition, no higher term is necessary now. Because, on
one hand, the third approximation for the water surface condition begins
with a term of the order 4% Our need should be sufficiently met if we
adopt the following equation:

PI(K)=A1‘|l+KA1,1+£2"‘A1.3’

¢,= dmHh1_5‘2_6’“*)."'(1?).:7'“—2'3, a=2e¢y, s=2me™*® (107)
2—1+p’b
we have
b
A1,0:1_'}’2‘?1+74Q?s A1,1:**12’Q-:
’ (108)
Am:_%%

Next, for the similar reason like the above, in (98) we may just put
Pi=1. Then
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—-I—[fc.tc il{ i L et —n) (ke
o 1<) (et 2) ok — T (=)o 2)m)

— T k(i — ) (k- —2) pola—2x0) (109)
K
in which

—dd3n
po)= [ =i (110)

It is found from the above that it is correct to have §=0 in deducing
(97).
When we now put

XA)K (Ax) _ea K «*
2 e “Adi= — —Yote s 111
x) H'}’"‘}l» Yot 2 Y+ 12 Ya+ ( )
we have
-e
- L (112)
/ﬁ'y-i-lu.’b

and for the reason mentioned above we should be satisfied with the first
approximation as a solution for (106). That is,

Py(k)=A:0=1, (113)
Substituting (109) into (112)

=294 ’ngrip: 54 Py 1 {pﬁ‘p +—' (p+2p,)+ '_pl}
L 2 12 o
+(kf +- + )pf,Jr'v} U, — 20, — Uy — u;:l (114)

In the above, w and v are given respectively by

un:fwe*az)'“ o (%‘i‘#}]d; (115)
T i
0
—alh+K) "dic
= 11
= f "f wta—14pu (116)

and between them is the relation like



166 ADVANCES IN CALCULATION OF WAVE-MAKING RESISTANCE OF SHIPS

n 1
un: 71an1+upn
a 44

7! n
(n+1)a™* + n+1

==
n

n-1

especially
(117)

1
Uy=— Do
a

1
=——+D,
@

po=t,—mie*, tozef"ffi((r) /

I, is a principal value of the so-called logarithmic integral.

5.4 The lift Y acting on the cylinder and resistance R, are given by
the following equation [A-17:

Ry4+iY=—2mip f "*"f‘ﬁ”' P(x) P(x) e~ «* duc (118)
— ut

where
P(x)=Py(x)+Pu(w)
Therefore
P("‘)m)=A1ni‘rw+"'(A1nEn+A_10A11)+(Am:420+2m-f420) (119)
From (108) and (114)
A Ay=1—2v"r +y4(8ri—5%)
Amffu‘{“EwAu:_'Yg?'m Aw 0+A10Aﬂo—yu+yu
For simplicity we shall choose the following expressions for coefficients:
Cy=Ry/4mpa V* | (120)
=Y/2mpa V*
We shall now go back to the original unit system and denote the
cylinder’s radius as a, the speed of the stream as V and the eylinder’s
immersion depth as f. Accordingly we write
e=fla, y=ga/V*, a=2¢f/V*
and further putting
C;x'zcu'u +JCW1+JCWS } (121)
Cr :Cyo +4Cy, +JCJ'2

and with C,, and C,, as the first approximation, 4Cy; and ACy, as correction
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terms for the cylinder’s surface condition and 4C,. and dCy, as correction
terms for the water surface condition, we may write

Cio=7%"" Cy,= —*rs (122)
ACyy=v'e™ [ —29r;+4*(8ri—s—1.)] } (123)
ACyy=vr, [29%r— v'(8ri—s*— 7y)]

ACp=(v* e %) X 4v* -r2-v0—|-v1%fvg—ul—uiﬁ(E-—I—‘?’?+32é )to
L a  a a’/

5 ] (124)
(B DA R (3D S

-]Crﬂl'cro = -"Crrs/Cn'n

in which the real part only is taken regarding functions v and w.

In the above we have been able to obtain the force acting on the
cylinder up to the order of . Next comes a term of v* order. But
with regard to this order the caleulation cannot be so simple as it has
so far been because in this term is included the one which is related to
the third approximation for the water surface condition. Be that as it
may, we shall show in Figs. 9 to 12 the result of the calculation carried
out with respect to the two ecases of f=2¢ and f=4a.

86. Conclusions

In general we may make the following statement:

(1) At f=da, the effect of the water surface is much smaller
than that of the eylinder’s surface, but at f=2a the two effects are
of the same order. This fact corresponds to that, as can be seen from
(124), while 4C,./Cy, is of the order of v 4Cy1/Cyyy starts at the term of
v'. In the quoted paper of NISHIYAMA only this 4C,./Cy, is given with
its value of 4m%y*e~“, that is in the same way as the order of 7

(2) Judging from the procedure of calculation, in the case of f=4q
the above approximation seems to give nearly a correct value. However,
in the case of f=2a the calculation result shown is to be interpreted
qualitatively only because the terms in higher approximations would
represent a fairly large quantity.

(3) In Figs. 9 and 8, Curve No. 1 represents the first approximation,
No. 2 the value for which only the cylinder’s surface condition has been
taken into consideration and No. 3 the value for which the water surface
condition, too, has been taken into account. To avoid confusion these
curves are all for the case of f=2a. With regard to wave-making resis-
tance, as can be seen in the figures, at that shallow immersion it is
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characteristic that the curves are steep and rather flat on the top. This
tendency seems quite different from that found in the approximate value
obtained by NISHIYAMA.

A conclusion may be drawn that at f=4a the effect of the cylinder’s
surface condition is important because it is greater than the other effect,
but at f=2a no correct value may be obtained if the water surface
condition is linearized.
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