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Two-Dimensional Unsteady Planing Surface

Masatoshi Bessho' and Masahiko Komatsu?

The two-dimensional unsteady problem of a flat planing surface is analyzed based on airfoil theory. The
present analysis treats the effect of the time-varying wetted length on the added mass and damping coeffi-
cient. When the reduced frequency becomes very small, the change in wetted length approaches the dis-
placement of the intersection of the planing surface and the undisturbed water surface. In the limiting case

of zero frequency, the wetted length change reduces to zero.

It is noted that the damping coefficient by

the present analysis indicates the negative value in the very small reduced frequency, as Ogilvie and Bes-
sho predicted previously in their theories derived from the different points of view.

Introduction

HYDRODYNAMIC planing boats have distinctive hydrodynamic
features quite different from those of displacement ships. The
weight of the planing boat, when running at high speed, is sup-
ported by hydrodynamic lift instead of hydrostatic buoyancy, and
a spray is formed upstream. The fluid past the boat flows off
smoothly at the trailing edge, corresponding to Kutta’s condition
in airfoil theory,

For the steady-state case in planing boats, a number of studies
have been carried out experimentally and theoretically. These
studies are well described in detail by Savitsky [1],3 Shen [2], and
Shen and Ogilvie [3].

In addition to steady-state characteristics, the hydrodynamic
performances of unsteady motions are also very important in actual
boat design. The porpoising phenomenon is typical and unique
to planing boats. In waves, planing boats oscillate and the violent
motions sometimes cause damage to the structure and injuries to
the crew. These two unsteady motions appear to be different.
However, the porpoising phenomenon belongs to a radiation
problem in hydrodynamics, and to calculate motions in waves the
radiation problem is a part of the calculations necessary for esti-
mation of motions. Mottard [20, 21| has reported a self-excited
planing vibration with only one freedom in motion—the vertical
direction—whose frequency is very high. But the reduced fre-
quency (k = wls/2U = circular frequency X wetted length/2 X
forward velocity) for that phenomenon is found to be very small
because the advance velocity is so high. Therefore the phenom-
enon discovered by Mottard can be reduced to the radiation
problem in which the condition necessary for the unsteady motion
is to find the negative damping coefficient.

In the calculation of hydrodynamic forces for actual boats, there
exist difficulties because boats are three dimensional. There are
a few three-dimensional theories for unsteady motions of ships such
as the slender-body theory and thin-ship theory. However, these
theories are very complicated as well as inconvenient in practical
caleulations.

The strip method seems to be only one practical procedure to
calculate unsteady motions. Bessho and Komatsu [4-8] have ex-
amined the applicability of the strip method to motions of high-
speed boats in regular head waves and found that the strip method
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is very useful for low or moderate Froude numbers. However,
for high Froude numbers the calculations by the strip method do
not always show good agreement with the experimental data. The
result obtained by a forced oscillation test suggests that the dis-
crepancy between the calculated and experimental data must arise
from the velocity effect on the hydrodynamic forces, especially
the damping coefficient.

Martin [9, 10] has calculated the porpoising instability and
motions of high-speed boats in waves by the strip method, the
hydrodynamic characteristics of which are based on Bobyleff’s
flow and Wagner's theory. The calculations agree well with ex-
perimental data. Zarnick [11] has also obtained good motion
predictions for high-speed boats in waves by the strip method,
using a nonlinear mathematical model in which the basis of the
hydrodynamic forces are the same as Martin’s theory. However,
since porpoising and motions in waves are oscillatory phenomena
dependent on frequency, it is more natural to calculate hydrody-
namics forces acting on a high-speed boat as a function of fre-
quency.

In general it seems that the strip method cannot directly take
into account the velocity effects on the hydrodynamic forces. In
order to examine the velocity effect, a two-dimensional problem
must be calculated where the flow impinges against a planing
surface and leaves the trailing edge smoothly.

When a planing surface oscillates in otherwise calm water, the
equation to describe the flow field is reduced to an aerodynamic
equation for an oscillating wing, when the effect of gravity is
considered to be negligible. However, the wetted length of the
planing surface, corresponding to a chord length in airfoil theory,
changes as the planing surface oscillates. In addition, spray is
formed upstream in physical reality.

Sedov [12] calculated a two-dimensional unsteady problem of
a planing surface in connection with airfoil theory, but his calcu-
lation does not include the effect of wetted length change.

Ogilvie [13] analyzed a heaving two-dimensional planing surface
with the wetted length changing. The wetted length is obtained
by equating the equation of the planing surface and free-surface
equation at the leading edge, where both equations share the same
value. The result, however, becomes inconsistent when the
heaving frequency approaches zero; that is, the wetted length
diverges for zero frequency. Ogilvie and Shen [14] determined,
based on Ogilvie’s theory, the critical reduced frequency which
causes instability to two-dimensional planing surfaces.

Bessho [15] has derived a theory by making use of the difference
of the solution for two slightly different wetted lengths, assuming
that the wetted length change is small enough for linearization.

An interesting feature of the results of Ogilvie and Shen and
Bessho is that the damping coefficients reach the negative values
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for a very small reduced frequency.

In this paper, the two-dimensional problem of a flat planing
surface is analyzed based on Bessho's theory [16]. The conditions
determining the wetted length are derived from the fact that the
planing surface oscillates as a rigid body without deformation.
The pressure, water surface elevation, vertical velocity, etc., are
expressed in Fourier series.

Property of solution by airfoil theory [16, 17]

The coordinate system is fixed in space as shown in Fig, 1. The
uniform flow, the velocity of which is U at infinity, impinges
against the flat planing surface. The flat planing surface has a
stnall angle of attack or a trim angle. Generally speaking the flow
consists of two parts around the planing surface. One is a spray
thrown out forward from the stagnation point on the plate, and
the other part is the flow past the plate. The spray produced up-
stream appears to be very thin and the pressure due to the spray
along the planing surface almost vanishes immediately before the
stagnation peint, when the angle of attack is small. In this paper,
therefore, the effect of the spray is neglected, as is usual in linear
theory of planing surface problems.

‘When a two-dimensional planing surface oscillates in otherwise
calm water, the water surface including the planing surface must
satisfy the kinematic and dynamic conditions. The flow is as-
sumed to be incompressible, inviscid, and irrotational.

Let 17 denote the water surface elevation, namely

Flzyt) =y — n(x,t) v8]

The kinematic condition requires that the total differential of (1}
be zero

D
D Fayt) =0 @
where
D_o 990 260
Dt ot (U toxlor T oy oy 3

and ¢ is the velocity potential of the flow field. Thus, neglecting
the higher-order terms in (2), the kinematic condition may be
written in the form

9% _(2 . pyo

2 ot T Vs )

The dynamic condition to the water surface is

p = fluid mass density

p = pressure Lg = lift for steady state
t = time
x,y = fixed rectangular coordinates kind
U = velocity of a uniform flow d
1 = water surface elevation H,* = i H,@

¢ = velocity potential

& = acceleration potential

£ = acceleration of gravity

h = heaving motion
ha = amplitude of heaving motion
e = pitching motion

v = vertical velocity of water sur- (

(= ha/ls)

'= /U

face wls

! = maximum wetted length of
planing surface
Is = steady-state wetted length of
planing surface
F.f1.fz = arbitrary functions

M = added mass
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Nomenclature
L = lift acting on planing surface

H,® = Hankel function of second

¢ = amplitude/wetted length ratio

w = circular frequency of motion

k = reduced frequency
= ok Kl

e 2
C{k) = Theodorsen function

m = added mass in nondimensional
form or integer

H

pressure distributions
(schematic)

planing

22
uniform flow

Fig. 1 Coordinate system

9¢ , ;90 -_P -
o T UG tam p in§, y=0 {5)
=0 elsewhere, y=0 (6)

where S denotes the planing surface, and g, p, and p are the ac-

celeration of gravity, pressure, and density of water, respectively.

In (5) and (6), the same linearization as used in (2) is applied.
Eliminating % in (5) and (6) with (4) gives

0 S °¢__10 L y2l, ;
(at+Uax)¢+gby_ p(bt+be)p inS (7)

=0 elsewhere (8)

When the Froude number, U/+/gls, is very high, the second
term of the left hand side in (7) can be neglected. Therefore, the
velocity potential may be written in the form

2, 2y _ 1
bt+Uax¢_ pp in$ (9)
=0 elsewhere {10)

The preceding equations turn out to be the relation between the
velocity potential and the acceleration potential, indicating that
when the effect of gravity is neglected, the flow field due to an
oscillating planing surface can be analyzed by making use of the
velocity potential and the acceleration potential.

Rewriting (9) and (10) gives

®=- ip(x.t) (11)

N = damping coefficient
n = damping coefficient in nondi-
mensional form or integer
An = Fourier coefficient of pressure
defined by equation (21)
B,, = Fourier coefficient of pressure
defined by equation {36)
¢ = wetted length in Fourier series

Inm = integral defined by equation
(93)
Alx)alx),b{x) = polynomials of x
F™}{mk’) = terms proportional to e k%
c'¥) = amplitude of wetted length
change defined by equation
(79)
e’ =Wl = cN)ls
ap = steady-state trim angle or angle
of attack
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d

=2, Ui) S(x.u,t) (12)

~\ot ox
where ® denotes the acceleration potential.
The acceleration potential can be expressed in terms of the
pressure distribution on the planing surface (see Fig. 1), that is

1t _plétlydt
Pavt) =, DR+ o (13)
Integrating (12) yields the velocity potential in the form
L (e _x—¢&

The vertical velocity of the water surface elevation n(x,7) may be
written as

9% _|[° 2
ot =30 (at +U bx) n(x.) (15)
Therefore, (15) has the following expression
1 _x—§
=g f o (E,t - ]dg (16)

The boundary condition on the wetted surface is given in the
form
v(x,t)=—alU + A(t) + &l —x), [—c<x<l (17)
where @ and h denote pitching and heaving motions, respectively,
and [ — ¢ < x <! means the interval between the leading edge and
the trailing edge of the planing surface.

Combining (12) and (17), the boundary condition with respect
to the acceleration potential becomes

dv _od . .
@_9% = —x)—2U 18
&~ 3yly=0 h(t) + &l —x) é (18)
On the other hand, differentiating (13) with respect to ¢
gives
29 _ 1 (et .
dyly=0 wp Ji-c(x—E£F

__1 23 ¢t plét)
- l—cx — dE (19)

Caxd

Changing the variables in (19) with

x=[-%(1+cos€) (20)

and

dx = %sinﬂd ¢

the pressure distribution in (19) can be written in the Fourier se-
ries

p__L i A,cosnfl (a1)

p sinf =0
The Kutta’s condition of smooth flow-off [rom the trailing edge
becomes

3 (—1)r4, =0 (22)

n=0

Thus, (19) can be written in the form

i Ancosnf’db’

od 2 d f T n=0
o= =—_—= ¢ =0 29
oy |y=0 ewsinf df Jo  cosf’ — cost (23)
Making use of the Glauert integral
cosnll’ sinnd
gy = 24
J; cost)’ — cost) = sinf! (24)
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(23) becomes
OB _ 44, 4 dagcosB .. ) (25)
oy |ly=0 ¢
Rewriting (18) with (20)
221 2Ua + S &t + cosh) (26)
by y=0 2

It is found from (25) and (26) that A, = 0forn = 4 and Az and
Ag can be written in the form

=t _ova+ Ca

Ag—4(ﬁ 2U& + 2:1) (27)
A s 28)
=3 (

On the other hand, the Kutta condition (22} is imposed on Ay,
A, Ag, and As.  Therefore the unknown constant reduces to either
Agor Ay In the airfoil theory these unknowns are determined
in the following procedure.

Substitution of (22), (27), and (28) into (13) and (14) gives the
velocity potential, ¢. From (14) the vertical velocity on the
planing surface can be calculated, and comparison of the vertical
velocity with {17) yields the solution.

In the case of planing surfaces, however, the wetted length
changes with time and is unknown. Therefore, in order to solve
the present problem it is necessary to impose another condition.

The water surface elevation on the planing surface may be
written in the form

) =h(t) + alt)l—x), l—c<x<! (29)
On the other hand, the vertical velocity and water surface ele-
vation contain the following homogeneous solutions of (12) and

(15), which convect downstream with time, that is

odl .
Y filx — Ut)

7x.t) = folx = Ut)

where f] and f; are arbitrary functions.

On the planing surface, however, the vertical velocity and water
surface elevation do not contain such solutions as (30) and (31), as
seen from (17) and (29). Therefore those terms in the vertical
velocity and water surface elevation must vanish as long as the
planing surface is a rigid body. In other words, the acceleration
potential satisfying the boundary conditions is determined by {21},
(22), (27), and (28) except for one unknown (either Agor A,) and
the wetted length varying with time. These unknowns are ob-
tained by imposing the condition on which such terms as (30} and
(31) vanish on the plate.

These terms arise from the homogeneous solutions of (12) and
(15). Let f be an arbitrary function satistying the homogeneous
equation

(30)

(31)

b ] o

AN § 5 i SO
ot + bx] f=0
When phenomena such as velocity distribution and water surface
elevation are sinusoidal, f is considered to be sinuscidal and may
be written in the form

f=flx = Ut) = Cf(x)e'et (33)

where C is a constant and w is frequency; f(x) is a complex function
of x.

(32)

Substituting (33) in (32) gives
of
= f= 34
o T 'f=0 (34)
where
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P_@
=7

Solving (34) and substituting the solution in (33) yields

f = Ceg—tk'xgiwt (35)

Therefore, such terms as (30) and {31) are found to be propor-
tional to e ~*'*, The condition on the rigid planing surface can
be derived by putting f = 0in (35).

Boundary conditions determining wetted length

An effort is made here to seek the terms corresponding to (35)
in the vertical velocity and water surface elevation on the planing
surface.

It is assumed that every phenomenon such as the pressure and
the change in wetted length results in sinusoidal behavior when
the sinusoidal heaving or pitching motion is given on the planing
surface in otherwise calm water,

When the planing surface is set in motion, the pressure distri-
bution moves with the wetted length changing. In Fig. 1, the
origin is chosen as the maximum point of the stretched wetted
length and = = [ — ¢ is the point for the instantaneous position.
The trailing edge is fixed at x = [.

In order to express the pressure distribution (21} in the range 0
< x <1, (21) must be written in the Fourier series again between
the origin and the trailing edge:

Pol ¥ B cons (36)
p sind ;5o
x= é (1 — cosd¥) (37
where
_tn Tp .
B, =2 E sind?{ cosndd? {(38)
mJo lp
and
€G- 1
&g=2 n=zl

Substitution of (21) into (38) with A, = 0 for n 2 4 and using
f as the variable of integration gives

B =5‘-ﬂf” > Acosm|cosndd0
=37 Jo mZ=:0 meosm|cosn

where use has been made of the fact that p = 0 forward of the in-
stantaneous position of the leading edge to transform the 8 limits
of the integration.

The coefficient A, may be written in the form

(39)

Ap = ¥ Alleimet (40)
m={
where m = 0 corresponds to the steady state and m = 1 represents
the sinusoidal motions. Usually the components larger than m
= 2 appear to be minor in hydrodynamic forces.
In the same manner, B, can be expressed in terms of the fre-
quency components:

B, = 3 Bimetmot (41)
m=0
"Making use of (39) and (41) with (13), it follows that
Plryt) = 3 B, yletmot (42)
m=0
where
Lt p™(Ey
(m) -—_ —r el
emiey) T Jo (x~£F + yzd'E )
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and

1

l o0
P £)

B{™cosnd
sind ,.go "

(44}
Integration of {14) with (42) yields
¢(m)(x,y,t)=%j‘“ (p(m)(f,y)eimw(t—(x—g)/U)dg

g—imk'x+imat %
=E T [ atmg rewmag

where k' = w/U.

Therefore, the spatial part of the velocity potential can be
written in the form

e—lmk': x ,
6y) =L 7 gy mid ()
Defining the auxiliary function
1 Cipmig)
aimi) = = f BT (46)
and combining (46) with (19) gives
adim) b
[ = — .2 4(m)
oy |y=0 bxq (x) 1)

Using (47) and differentiating (45) with respect to y provides
the expression

o 1

(m) = — = — (m)

om0 =5y, = T I
imke —tk'm2

T J ampenmiar s)

In the same manner, the water surface elevation (16) can be
expressed in the form

—ik'mx x ,
nma) = § otmig ojemisa
Substituting (48) in the preceding equation gives
g—imk's

nime) = — S 7 gimigemiiay

+ iz_‘:e—imk'x J:z dx’ J‘_xl qim(E)emk EdE

Performing the partial integration in the second integral, it follows
that

7?("")(1) = Q_"i;f;._l)e—imk’x J‘_Z q(m)(f)eimk’édg

imk’

- Threimks (7 gqmigemkeds (19)

The conditions on the planing surface concerning the vertical
velocity and the water surface elevation are derived from (48) and
(49). Before the derivation of the condition it is necessary to
evaluate the second term in (48).

Rewriting (44) in the expression

1 w
Lpmig) = 3 By
P n=0

where
(m) = COSRY
" sind
then (46) can be expressed in the form
gmx) == 3 Birgim
T n=0

where
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di) = )28 g 53)

x—§
Changing variables in (53) with
£= é(l — cosd)
and
!
2

=é(l—COSl9’), 0<x<li

x =—(1 ~coshu), x <0

and making use of the Glauert integral together with the inte-

gral
*  cosnfidl e "
= 54
.J; coshu — cosf 7 Sinhu (54)
¢\™ can be written in the form
sinnd’
q'("m)=7rsim?” 0<x <! (55)
m=—gf " <0
" Teanhu’ *
- C(?shnu _ siflhnu (56)
sinhu  siohu
For convenience sake, let ¢i™ divide into two parts
g™ =g + ¢l
where
0, 0<x<! (57)
(m) —
qni _ ccfshnu L x<0 (58)
sinhu
siind o ¢y <1 (59)
) = sin
gn2’ = :
x Snbmet g (60)
sinhu

For 0 <x <1, cosd = (I — 2x)/I, then gl = 0, g’ = 7, g3’ = 2w (I
— 2x)/1, ¢ = {1 + 4l — 2x)2/1*] etc. . In the same manner
iy’ = 0,qf3 =7, qiF" = 27 (I — 20)/1, gl = w[—1+ 4 - 2x)*/1?]
ete. for x < 0, since coshu = (I — 2x)/I. Therefore g7, is found to
be a polynomial of x.

Substitution of {57) to (60} in the integral of the first term in (48)
provides

{7 qmigemeas

1 &2 ,
=2 S B f @ + afmemdg (6D

x
T n=0 —o

The first term in (61} becomes
7 atp@emesa
[{] x
= 2 ampemiids 4 am@emiids (62

The second term in (62) vanishes from {57), and the first term
can be evaluated as follows: :

I dp@emvedg
l

2Jo
Making use of the Hankel function of the second kind 18]

" gtmkl—coshu)/2coshnudu  (63)

22

2emri/2

HEk) = - — J; e ~tkeoshneoshn ydy

= jn(k) - 1'Yn(k)

where ], and ¥,, are the Bessel {functions of the first kind and
second kind of order n, respectively, (63} can be written in the
expression

o 2 ’
j:m gm(etmFidE = — Z;_ leimk'l/2 i—(n+1)H$‘2) (_m%l] (64)

On the other hand, since ¢\’ is a polynominal of £, the second
integral can be evaluated in the form

|7 amemids = emkaat) (65)

where A)(x) denotes the polynominal of x.
Therefore, (61) can be expressed in the form

J:I q(m)(g)eimk’éda: = Fimi{mk’) + a'™{x)et™ = (66)

where a™)(x} is a polynominal of x arising from (65) and

« ’
F(”‘}(mk’) =— %Ieimk'i/2 5 j~m+ ”B:(mm)H?) (m;c [) (67)

n=0

Hence, substituting (66) in (48) yields

1 imk’
(m), = - = gim) HRR g(m)
vi™x,0) Tl (x) + T (x)

+ 1 Pk Je—imk(66)

For the water surface elevation, differentiating (66) with respect
to mk’ as follows:

a(,:k:) f_’; gmAE)etmkEdE =i J‘_ : Egm)(E)eimk Edg

-9

afmk’)

where b™)x) denotes a polynominal of x, (49) can thus be written

in the form

_(timk’ = 1)

=
—_ m_k, —imk’z 2

Ty

Therefore, the required condition on the planing surface be-
comes, from (35), (68), and (69)

Fim){mk’) + bm)(x)etmk's

7™ (x) [e~tmK R (mk’) + a(m)x))

Frlmk') + b™(x)] (69)

FMY(mk’)y =0 (70)
and
__Fimimk’) =0 (71)
o{mk’)
Finally, rewriting (70} and (71) yields
3 j—ln+ DRImE (%] =0 12)
n=0
and
et DRimigge (MK
T -+ g (M2 - g (73)
n=0 2
where
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* mk’ o] @ mk’l
o ),

R

Solution of a heaving motion

In order to solve the heaving motion, the required conditions
{72) and (73) must be calculated.
The heaving motion may be written in the form

h = Rethae'~t) (75)

where ha denotes the amplitude of the heaving motion and is a real
number. The heaving amplitude is assumed to be very small.

For convenience sake, the following nondimensional numbers
are defined as

(76)

and

Kis _
2

where ¢ is the amplitude-wetted length ratio and k is a reduced

frequency; Is denotes the steady-state wetted length of the planing

surface.
In general, the wetted length varies with time in the form

k=

wls
U (77

c= Z c(m)eimwt
m=0

(78)

where ¢(™) is a complex number. However, since the most im-
portant components are the @ component and steady-state or
stationary component, m = 0 and 1 are taken in the calculation.
Then the foregoing equation reduces to

= C(O) + C(l)g""t (79)
where
eV =cll 4 4V O =[5 ||

In a manner similar to (79}, (40) and (41) may be written in the
form

Ay =AQ + At (80)

B, = BY + Bllgtt (81)
where

A = Al +1iAQ) (82)

BY = BY + By (83)

and A, ALY, BY, and BY are real numbers.

The first term in (80) is determined in the following manner.
Integrating (21) over the wetted length, only Ag remains. Since
Ag represents the lift acting on the planing surface, making use of
the steady-state solution [19]

Ly= épfrlsUzao (84)

where ap denotes the angle of attack, and then substituting (84)
into the integral of (21), gives
Ag]) = aoU2 (85)

On the other hand, the Kutta condition for the heaving motion
can be written

Ap=A,— A

because A3 = 0 from (28).
The second term, A; in {86), reduces from {27) to

(86)
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A2=icﬁ (87)
Substitution of (75) and (79) in (87) gives
Az =—2haw? [Le 4 cOcoswt
4 2
+ % (cMeos2wt — cVsin2wt)|  (88)
Thus
4
1
AP =_ = 201
J AL =~ ghaokl (89)
Al =0
Af) == L haw?e® = - Lhawtts
1 4 ¢ 4 {90)
A =0
.
Using the Kutta condition, it follows that
1
0 — g_1 2,(1)
‘ A = U Shaw c! o1)
Al =0
3

It is necessary to evaluate B,, {or the conditions (72} and (73).
B, consists of three integrals, that is

c 3
B, = ? €n ZO Anlym {92)
where
hm=ljwmm%mWﬁ (98)
7 Jo
cost = —1+ % (1 + cosf) (94)

The integral (93) has the following properties:
Lim=0, m>n

and

Lniim+ Ii-im =-72? j;tcosnﬂcosﬁcosmﬂdﬁ

2
= — fﬂ cosnd
7 Jo

(% - 1) + %cosﬂlcosmﬂdﬂ

The integral I, ,, can be calculated by making use of the re-
currence formula (95),
Also the integral (93) can be expressed in the form
Lum = Ifhn + Iie'! (96)
where
Lom = Lin, + i, (97)

After some algebra, assuming ¢@/l = 1 and neglecting
higher-order terms, it follows that

o, = %na’, n=m (98)
IS.O}., =0, n#m (99

and
I, = na’ (100



where

[

1 .
a =7l +ic) ~ (el + iel!)

—

On the other hand, for the heaving motion, from (28)
Ag =0
Therefore, B, (92), reduces to

¢
IAzfn,z

The first-order terms in (101) may be written in the form

B, = ¢, [%Aoln.o + %Alrﬂ,l + (101)

18]
[?Aml,,,m] ~ASIN, + IQ.AL + ’AR)  (102)

Thus
Bl = A + U’ (103)
Bi'= AV + 4aeU%" (104)
and
B =AY + 8oyU2’ (105)
For n = 3, making use of (98), (99), and (100)
BiY =dnooU%’, n=3 {106)

When the wetted length is fixed constant—that is, if 2’ = 0 is
set in (103) to (106)—the condition (72) yields

s HP(k) — ia"HK) — el HP(k) = 0 (107)
where ¢!V is used instead of A%,
The solution of (107) can be written in the form

afl) = ( 14 1 k)) afl! {108)
af’ = i-EC(k)ag” (109)
al) = — %hawzis (110)

where C(k) is the Theodorsen function [17]

2)

Ch) = — L) (111)

HP(k) + iHE(k)

Therefore, when the wetted length is assumed not to change
with time, the solution of this problem reduces to the half value
of the unsteady airfoil theory [17].

In the case of planing surfaces, however, since the wetted surface
varies with motion, it is considered that (108) to {110) are a part
of the solutions of (72) to {73}, and the other part of the solutions
must be added to represent the effects of the wetted length change.
Hence, the solutions may be written in the form

AV =af? + Aaf) (112)
A =aV + Ag" (113)
AP =af + A (114)

where AaglV, Aa; V), and Aay") denote the additional terms pro-
duced by the wetted length change.

The Fourier expansion of As, (88}, shows that the effect of the
first-order change in the wetted length does not appear in wit

components. It follows that
Aa' =0 (115)
Thus, from the Kutta condition, {86):
Agl) — Agll =0 (116)
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Sllcllbstitution of (108) to (110} and {112) to (1186) into {72) and (73)
yields

(HE — iHP) Al

= —ayli2a’ IH?) + 4 il (=i HP|  (117)
=

(@d"H§ — ia{"H} — ai’H3) + (Hj - iH})Aal)
= —ayU%’ [Ha + 4 f; (—i)"nH,‘,] (118)
The series expansion in {117) can be evaluated as follows using

the formulas for the Hankel functions. Let I be the summation
of the series, namely

I= % (~i)nH®

n=1
Since
HP = (HE, + HE,)
then
=3k 5 (—ir(HR, + HY)
2 n=]
Hence
I= —%k(HF’ + iHE) (119)
Substitution of (119) in (117) provides
H&Z)
- 2,7 ——O
Aay =iagU2a’ |2k HP + in,z)] {120)

In the same manner, (118) reduces to
(@l Hs — ia{"H{ — afPH3) + (H§ — tH)Aal)
= —agU2’' [-H — 2kHP — 2i(H{ — kHI®)] (121)

Combining (120} with (121} yields the wetted length change in
the form

o]
0!()U2

oy~ s - BE) o (s - )+ 2]

SH{Y + HY li - % C(k)]

{122}

Substitution of (122) in {120} yields the solution for Aaf.

When the reduced frequency becomes very small, the wetted
length can be obtained by rewriting (122) in the form
—4 e 2CKk)—4

o~ 6 [
g

( ) oy 3+ logk

f

{(123)

Thus, for very small reduced frequency, say, around k = 0.01:

la’| ~ p (124)
and

lima’ =0 (125)

k—0

Therefore, the limiting case of the wetted length for zero fre-
quency results in zero, which seems to be different from Ogilvie’s
analysis {13]. Physically (124) may be interpreted as the change
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of the intersection of the plate with the calm water surface in a
quasi-steady-state case.

The unsteady lift acting on the planing surface can be evaluated
by integrating (92} over the wetted surface. Let £ be the lift;
then

£ = Re{Lett} (126)
where
L =Lc+ iLs (127}
Thus
L= f‘ pdx = lrplsB{,”
I—c 2
= % rols(AM + aAl) (128)

where A} and A" are determined by (112) and (113} with (120)
and (122).

On the other hand, using the added mass and damping coeffi-
cient, the unsteady lift can be written in the form

= —Mh — Nh

= Mhaw2cosw! + Nhawsinwt (129)

where M and N are the added mass and damping coefficient, re-
spectively,

Combination of (128) and (129) yields the expression for the
added mass and damping coefficient, and their nondimensional
forms can be written in the form

_ M _ 1
m= pls2  pls?haw? (130)
N 1
n= ohim = e wt Ls (131)

Finally, rewriting (130) and (131) together with ( 128) and the so-
lutions obtained in the foregoing, it follows that

m—in—-IL(B—s’”)

8 k2 (U2 (132)
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In the nondimensional forms, the added mass and damping
coefticient become independent of the trim angle and amplitude
of the heaving motion, because Bf is proportional to ek2U2, while
the wetted length change is a function of the trim angle. The trim
angle determines the steady-state wetted length, which has the
effect on the added mass and damping coefficient implicitly in
(132).

To examine the effect of Aagin BYY in low frequency, taking
the nondimensional form

71 A wioef, ) e
8ek2 U2 8 ¢k? HP + iHE )

then Aag appears to have a crucial effect on the added mass and
damping coefficient.

Figure 2 shows the nondimensional values of the added mass.
The values calculated by (132) including the effect of the wetted
length change are higher than the result by (108) with no effect
of the wetted length change.

The damping coefficients are shown in Fig. 8. The damping
coefficient with the effect of the wetted length change has almost
the same tendency as the calculation without change of the wetted
length in the reduced frequency larger than about 0.4, although
the former has higher values. However, it is observed that in the
low-frequency range these two calculations have quite different
tendencies; that is, the calculation by the analysis with the wetted
length effect decreases very quickly when the reduced frequency
is smaller than about 0.4, and finally reaches negative value around
k = 0.176. According to Mottard’s (20, 21] experiments, the
planing hull which has only heaving motion suffers from the
self-excited vibrations. The reduced frequency causing the self-
excited vibrations appears to be between around 0.1 and 0.2, The
critical reduced frequencies of Mottard’s experimental data were
estimated by making use of the well-known formula for aspect
ratio and lift coefficient. Attention is paid here to the fact that
in the case of a planing surface the lift coefficient becomes half of
the airfoil case. Figure 4 shows the relation between the critical
reduced frequencies and the aspect ratios along with the results
of the two-dimensional theories. It is observed that the present
analysis agrees very well with the experimental data for large as-
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pect ratios. An interesting feature of the experimental data is that
the critical reduced frequency becomes small as the aspect ratio

decreases. This may suggest that the instability with only heaving
i-notion occurs when the aspect ratio of the planing surface is very
arge.

It has been found that the present analysis coincides exactly with
the result by Bessho's theory [15] derived from the other point of
view.

The wetted length change decreases as the reduced frequency
increases, as shown in Fig. 5. The behavior of the wetted length
around k = 0, which is approximately the displacement of the
intersection of the planing surface and the undisturbed water level,
seems natural physically.

Conclusion

A two-dimensional unsteady problem has been analyzed by
making use of acceleration and velocity potentials on the as-
sumption that the effect of gravity is negligible, that is, that the
Froude number is very large. The analysis is based on the fact that
the planing surface oscillates as a rigid body without deformation
while it is set in motion. The calculation has been carried out for
a heaving motion.

The analysis includes the effect of the time-varying wetted
length on the hydrodynamic forces. The wetted length change
appears to be different from that calculated by Ogilvie [13],
especially for very small reduced frequency. For very small re-
duced frequency, the wetted length change becomes the quasi-
steady-state displacement of the intersection of the planing surface
and the calm water surface elevation. This result seems natural
physically. The wetted length change decreases as the reduced
frequency increases and is proportional 1o the amplitude of the
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heaving motion and inversely proportional to the trim angle.

The general tendency of the added mass and damping coeffi-
cient is similar to those by airfoil theory, except for very small re-
duced frequency, but is different in quantity. It is noted that the
damping coefficient becomes negative when the reduced fre-
quency reaches around 0.2. The result is consistent when com-
pared with the experiments of Mottard [20, 21].

The present analysis coincides exactly with Bessho's theory [15]
derived from the different concept.

In the future, an experiment appropriate for the present analysis
is desired. In order to apply the two-dimensional solution to a
three-dimensional problem, there must exist problems to be solved.
However, the present analysis may be used to a certain extent with
a proper approximation for porpoising and the motions of planing
boats in waves.
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