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of a Symmetric Ship

By R. Timman' and J. N. Newman®

holds.

A coNTrROVERSY has arisen in ship-motion theory re-
garding the cross-coupling damping coefficients of a
pitching and heaving ship. If the ship is symmetrical
fore and aft and if it has no forward speed, then from
symmetry the cross-coupling moment due to heave and
the force due to pitch must both be zero, at least in the
linearized solution of the problem. However, if the ship
is moving with forward speed, an asymmetry is intro-
duced and cross-coupling results. Haskind [1]® has em-
ployed thin-ship theory to show that for a symmetric
ship with constant forward speed, the two cross-coupling
damping coefficients for pitch and heave are equal in
magnitude and opposite in sign. However, this con-
clusion has received criticism in several papers and a dis-

! Professor of Applied Mathematics, Delft Technishe Hoge-
; sehool, Delft, and Consultant, Netherlands Ship Model Basin,
Wageningen, Netherlands.
* Naval Architect, David Taylor Model Basin, Navy Depart-
ment, Washington, D. C.
 Numbers in brackets designate References at end of paper.

Journal of
SHIP RESEARCH

The Coupled Damping Coefficients

A study is made of a floating or submerged body with longitudinal and transverse sym-
metry, which is moving with constant forward speed and performing small oscillations.
The analysis is quite general in the sense that the shape of the body and the nature of the
oscillations are unspecified, but it is assumed that the linearized free-surface condition
With this assumption the oscillatory velocity potential is found in terms of an
unknown Green'’s function, the existence of which is also assumed. This potential is then
used to show the symmetry properties of the cross-coupling damping coefficients.

pute has arisen, which is reviewed in the survey of Vossers
21 .

An analysis of particular relevance to this discussion is
that of Havelock [3], which considers the case of a float-
ing spheroid with a rigid free-surface condition. Have-
lock assumes that the spheroid is pitching and heaving
and that there is a constant forward speed or, equiva~-
lently, that there is a uniform flow of the stream. With
this model it is found that the two cross-coupling co-
efficients are of unequal magnitude, and Havelock con-
cludes that equality of the cross-coupling is a consequence
of the thin-ship approximation. However, the sum of
the two coefficients can be expressed [4] in terms of
energy radiated in outgoing surface waves and, if a rigid
free surface is assumed, there can be no waves and there-
fore no energy radiation. This reasoning leads to a con-
tradiction with Havelock’s result, for if the sum of the
two cross-coupling coefficients is zero, then they must be
equal and opposite.

The source of this discrepancy lies in the fact that in

Nomenclature

MARCH, 1962

Bi; = damping coefficients fe(x) = =z cos(n, y) — y cos(n, =) (z’,y’,2") = Carteslan co-ordinates fixed
¢ = forward velocity G(x, £) = Green’s function in body

F(x) = equation of the body surface g = gravitational acceleration « = displacement vector of a point

fi{x) = cos(n, z) = horizontal direc- i,j, k, = unit vectors on body
tion cosine n = unit normal into body surface ¢; = oscillation amplitudes of body

fx) = cos(n, y) = transverse direc- p = fluid pressure £ 1, ¢ = dummy co-ordinates corre-
tion cosine ! = time sponding to (z, ¥, 2)

fi(x) = cos(n, z) = vertical direction ¥(x) = velocity vector of steady flow ¢{x) = .velocity potential of oscilla-
cosine field tory flow

J{x) = ycos(n, z) — zcos(n, y) (z,y,2) = Cartesian co-ordinates fixed w = circular frequency of oscilla-

fi(x) = z cos(n, z) — z cos (n, 2) in space tions



Havelock’s analysis the boundary condition is satisfied
by taking the oscillatory normal velocity on the spheroid
and equating this to the normal velocity of the fluid on

the mean position of the spheroid in space. In fact, the
oscillatory disturbance is a small perturbation of
the steady flow field, and the boundary condition on the
spheroid must be satisfied on the exact oscillating surface
of the body, or else expanded to the mean surface in a sys-
tematic manner so as to include the oscillatory flow in-
duced on the body surface by its change of position in the
steady-state field. That is, the oscillations of a ship in a
moving stream give rise to a small disturbance of the
steady flow field, and various second-order effects enter
into the unsteady problem as a result of the lower-order
steady field. It can be shown by an extension of Have-
lock’s analysis that if the boundary condition is satisfied
on the exact surface of the spheroid, then the cross-cou-
pling damping coeflicients between pitch and heave are in
fact equal in magnitude and opposite in sign. It thus
seems plausible that this equivalence holds for any sym-
metrical ship or body, irrespective of the thin-ship as-
sumption. _ :

In order to study this question more generally, the
present paper treats the problem of an arbitrary floating
or submerged body with longitudinal and transverse
symmetry, which is moving with constant forward speed
and oscillating sinusoidally in any of the six degrees of
freedom. The only significant assumptions are that the
problem is linear, in the sense that the oscillations are
small and that the disturbance of the free surface due to
the forward motion is also small. To be physically
realistic, the latter assumption implies that the body is
thin, slender, or deeply submerged, or a combination of
these, but the analysis and conclusions are equally valid
for the case of a nonslender body with a rigid free-surface
condition.t (“Shallow” ships, with small draft and
finite beam, are not included in the present work.) With
these two basic assumptions we show that the sum of the
two complementary cross-coupling damping coefficients
is zero for all pairs of modes of oscillation except for the
coupling of surge with pitch and roll with sway. Further-
more, fifteen of the thirty cross-coupling coefficients are
shown to be zero. The same conclusions have been ob-
tained for a thin ship by Hanaoka [6].

As usual we assume irrotational incompressible flow
and formulate the problem in terms of the velocity po-
tential. - The potential problem is solved in terms of a
Green’s function which is not explicitly known, but the
existence of this function seems physically plausible and
can probably be proved by recourse to the theory of
Fredholm integral equations. The reciprocity properties
of this Green’s function are then established and the

“ The distinction between thin and slender bodies is important.

- In both cases the beam is small compared to the length but the

thin ship has a small beam-draft ratio as well, whereas the slender

ship has beam and draft of the same order of magnitude. By

deeply submerged we imply that the depth of submergence is suffi-

ciently large that the waves will be small, but not so large that

ghq free surface may be neglected and the fluid considered as in-
nite.

2

symmetry properties of the damping coefficients follow
directly. It should be emphasized that we do not ex.
plicitly solve either the steady or unsteady potentia]
problems. )

The proper representation of the oscillating potential
equation (9), is particularly interesting, since it demon-
strates the effect of satisfying the boundary condition on
the exact (oscillating) surface of the body. The final
results for the damping coecflicients are shown in g
matrix, Table 1.

Both the analysis and final results are analogous to
reciprocity studies in aerodynamics [7, 8]. In fact this
analogy was the original motivation for suspecting that
the equivalence of the pitch and heave cross-coupling co-
efficients did not depend on the thin-ship assumption,

The Boundary-Value Problem

Let (z, 9, 2) be a Cartesian co-ordinate system, mov-
ing through the fluid with constant velocity ¢, with z ver-
tically upward and = in the direction of forward mo-
tion. In addition we shall employ an oscillatory co-ordi-
nate system x’ = x — e’ where ¢ is an infinitesimal
vector, which may depend on x’, and the real part is to
be taken in expressions involving ¢*!. The x’ co-ordi-
nates are fixed with respect to a body which is defined by
the equation F(z’, y’, /) = 0. The velocity of the fluid
is represented by the vector

v(x) + ¢“'ve(x)
Thus v is the steady velocity field due to the forward
motion of the body, in the presence of the free surface,
and ¢(x) is the potential of the oscillating velocity vector.
The function ¢ must satisfy Laplace’s equation, the
linearized free-surface condition [4]
0¢ .09 0%

-g 5% + W + 2iwc % c? 5.’;?: 0 1
on the undisturbed free surface z = 0, and a suitable
radiation condition at infinity.

The boundary condition on the body is
“DF _ OF s
B e mem 1 . jol
0 i 5 + (v + e*'v¢) Vi

_OF 2u' | OF 2y’ OF 3

oz’ 2t oy ot | o2 ot
+ (v + v e) '[i <g—§, abz, 25, 2‘1;, + g—f: %%’
R
(G e+ 2]

= —ijwe™y- Y F + (v + e“tyg)-

. {Ow O«
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This condition holds on the actual surface of the body
where, from Taylor’s theorem

v = Wae + [(@ 9)V]uae™ + 0(a?)

The subsecript “mean” denotes that the function is to be
evaluated on the mean position of the body, or with
x = x’. Thus we obtain the boundary condition

0= —iwe (e val) + [v(x') + é've

+ ei“”(a-vx/)v(x')]'[vfo — g (g—z -VIfF>

— jei“’t (?E 'V;;'F — keiwt ?_‘_" 'V;'F + 0(042)
oy oz

The steady-state term gives the boundary condition for
\/]

v(x) v F =0, (2)

4 the terms of first order in the small oscillatory func-
“ons give the boundary condition for ¢,

VQS'VJ:'F = '[wa'Vz’F - [(&'V)V}mean’v:c’F

(du (o _
+ [V]mean ¢ {l (a VI’F> + § (5:1-/ Vx’r>

% Qa
+ i‘( (6’2' °V:'F>J

Vo Vo F = twa vl

or

+ [(VV)Q' - (Q"V)V]mean'V:r’F (3)

In equation (3) and hereafter, all of the terms are small,
of the same order as « or ¢. Thus to this order of ap-
proximation it is no longer necessary to distinguish be-
tween the actual position of the body and its mean
position, or between the co-ordinates x and x’.

We now use the vector identity®

- Ve — (@v)v=9V X (@XvV) = aV'v+ vV-e

and since ¥-v = 0 (from incompressibility) and v-vF
= 0 [from equation (2)], we find that
Vo VF = twa-VF -+ [v X (e Xv]-¥vF on F =0

Since ¥F is a vector normal to the body surface, it
follows that the boundary condition for ¢ on the body
may be written as

d : '
% — fiwe + ¥ X (« X ]'n
on

Thus the effect of the steady flow is to increase the
normal oscillating velocity by v X (« X v)-ne™.

@)

Green’s Theorem and the Green’s Function

Now we employ Green’s theorem

$Cf. (9], equation (1.4.13).

MARCH, 1962

600 = 5= [[ | 660 0 5= 600

o
— o) 2 0 9 |dn

where x is a point on the mean body surface and the in-
tegration is over this surface, the undisturbed free surface
z = 0, and a closing surface at infinity. The Green’s
function is any harmonic function of x and £ which is
singular like the potential for a source at the point x = &.
We shall assume the existence of a Green’s function which
satisfies the free-surface condition, the same radiation
condition is ¢, and the condition

oG _ 0 on the body F(§) = 0
ong

As stated in the introduction, the existence of this
Green’s function can probably be proven from the theory
of Fredholm integral equations, and furthermore seems
physically plausible since this function can be visualized
as the potential due to a realistic fluid flow; i.e., the
djsturbance caused by a small pulsating sphere in the
presence of the body and the free surface.

Before proceeding further we must establish the re-
ciprocal properties of this Green’s function. Assume that
G+ and G— are two Green’s functions satisfying the con-
dition 9G/dn; = 0 on the body and satisfying the free-
surface conditions

_oGE . .o oGE L 0GE
g > + w¥GE F 2wwc o8 c 8
=0 on ¢=0. (6)

These two functions correspond physically to the velocity
potentials of an oscillating source at the point x = &, in
the presence of the body and the free surface. The func-
tion G+ corresponds to the case where there is a free-
stream velocity ¢ in the —z-direction and the function
G~ to a flow with velocity ¢ in the +a-direction. Be-
cause of this difference the sign of the third term in (6)
must differ for the two cases.

From Green’s theorem, with x and y two different
vectors, '

G+(X, Y) - G—<y7 X)

_ 51; f f f v [G+(x, HVE(y, ©)

— Gy, VG *(x, &) 1dV;
1 o _
_ ﬂff[aﬂx,aaa (v, § — G~(y, ®
a%e aHx, z)] ds,

where the surface integral is over the body, the undis-
turbed free surface, and a closure at infinity. The inte-

3




gral on the body vanishes since 0G%/0n, = 0 and the
closure at infinity vanishes from the radiation condition.s
The integral over the {ree surface is equal to

1 oG~ oG+
2 +5¥ -
2TH [G o0 G o ]d&dn

-1 {2 4 95,0 00~ _ 2 O%GT
27rgff [G’ (wG + 2¢we Y c Yz
02

. oG+ oG+
— = 20+ — v
G (co G 2iwe o o8 >:'d§dn

=L (fo]g+( -_2ai">
27rgffb£[G (zwcG’ ¢ oF

oG+

+ G- <iwcG+ + c2— >} didy -

dk

1 wf e e .06
= 2—71_9 [G (zwcG ¢ mbé)
—+ G- (’L'wCG”" + ¢? %G;)i] dn

where the line integral is over the boundary or boundaries
or the free surface, or the intersection of the free surface
with the closure at infinity and (if any) with the body.
From the radiation condition the integral over the boun-
dary at infinity vanishes, and if the body is submerged
there is no further boundary, with the result that

GHx, ¥y) — @ (y,x) =0
or
GH(x, & = G (& %)

For a floating body, the beam must be small (i.e., the
body is either thin or slender) and thus the line integral
around the waterline is of order

£ldn]

which is of the same order as the beam. Thus it is con-
sistent with the linearized free-surface condition that, in
all cases,

&+

GH(x, ) = G~(& x) )

That is, the Green’s function is reciprocal if the direction
of the streaming flow is reversed. This property is well
known for the Green’s function which does not satisfy a
boundary condition on the body.

We now return to the construction of the velocity
potential from equation (5) substituting the Green’s
function G*(x, ). From the reciprocal property (7) it
follows that

oG+ 6. OGT oG+
-—g “‘é*g‘ -+ WG+ —+ 21we a—’c — c? o022

¢ This consequence of the radiation condition is not physieally
obvious. Some discussion of this point will be found in reference
[10], page 458.

4

on the undisturbed free surface, and thus that ¢ satisfies
the free-surface condition (1). Turthermore, the surface
integral in (5) may be treated in exactly the same manney
as we did in establishing the reciprocity relation between
the Green’s functions. It follows that

60 = 5 [[ ertw v a-stas.

where the integration is only over the body.
Substituting (4) in (8) we obtain

6= 5 f Glx, §)[iwe + v X (a X v)]ndS,

This is equal to

¢=2iff{z‘wa<:+vx[(«><v)a]

i
— (V@) X (e X v)}-ndS
but from Stokes’ theorem

S SV X (e X v)G]-dS = £« X v)G-dl

where the line integral is again over the intersection, if
any, of the body with the undisturbed free surface.
Once again we invoke the linearized free-surface con-
dition; if the waves are small, then v on the free surface is,
to first order, tangent to the undisturbed plane of the
free surface. Since v is also tangent to the body surface,
1t is tangent to the intersection 1, and thus (« X v)-dl = 0,
and the line integral vanishes. Thus we find that

1 .
¢ = é?rff {iveG — VG X (a X v)}-ndS
or, since
VG X (e X )]'n = (V@ Ve — (¢-YGE)v]n

= (v-v@(a-n)
it follows that

6= o f (oG = v- v (endS, ()

where the integral is over the body surface. Thus the
effect of the steady velocily field on the unsteady polential is
expressed by the factor v-v@. Physically this can be
thought of as a dipole distribution in the direction of v
(and thus tangent to the body surface) and of strength
equal to the normal displacement (a-n) times the mag-
nitude of v. The same result has been derived for a thin

ship [4].

The Forces and Moments

Equation (9) holds for any oscillatory displacement
vector «, and is therefore not restricted to rigid body
motions. We now assume that the body is rigid, with
six degrees of freedom. It is convenient to introduce an
indicial notation, where we denote the six oscillatory
velocities by

iwret (G =1,2,...6)
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These are, respectively, surge, sway, heave, roll, pitch,
and yaw. We also define the six matrix elements

fi(x) = cos(n, z)
Jo(x) = cos(n, )
%) = cos(n, 2)
Ji(x) = ycos (n,2) — zcos (n, y)
fo(x) = zcos (n,x) — x cos (n, 2)
fo(x) = xcos (n,y) — ycos (n, 2)
Then the normal displacement «-n at the point 2 is given

by

en =3 £

j=1

(10)
and if p is the hydrodynamic pressure, the hydrodynamic
forces and moments are given by the six expressions

Fi = — ) S ofi(x)dS: (f=1,2,...6) 11

;. The pressure p is, from the lincarized form of Bernoulli’s
S—equation, -

p = —pliwgc™ + (v- Vo)™ + 14 (v-v)] (12)

where terms of second order in the oscillatory potential ¢
are neglected.

The integral in (11) must be evaluated on the oscillat-
ing surface 8f the ship, and thus the zero-order term 15
x(v-v) must be expanded to

l .).(V : V)budy = }é (V : V) mean

-+ eiw(&'v)(}év‘\’%nean -+ O(az)

Also if the body intersects the free surface, the oscillatory
change in the surface of integration must be included.
However, both of these effects arc in phase with the dis-
placement e’ and will not influence the damping co-
efficients.

We restrict ourselves then to the damping forces and
moments, which may be represented by the imaginary
part of the integral (11), taken over the mean surface of
the body. ILet the damping cocfficients be represented
by the matrix By, where the first index denotes the
divection of the force and the sceond index the velocity
component involved. Thus, for example, By is the heave
damping force due to pitching oscillations. The thirty-
siv coeflicients are identified by the matrix in Table 1.
Combining equations (9-12) and taking the imaginary
part, we obtain the expressions

By = £ T f fs il + (v

f f S = VO IG(, DiSdS: (13)

[n this form the possibility of symmetry, and the im-
, partance of the dipole distribution —v- G are apparent.
‘¢ In order to establish the symmetry properties of the
cocfficients we consider the same forces and moments with
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the direction of the forward velocity reversed. To dis-
tinguish between these two cases we shall denote the
matrix appropriate to forward motion in the +a-dirce-
tion as By;* and the matrix of the reverse flow by By—.
Then

By* = L 1m f fs )+ V2V

f Lo — vEQ) vOGE(x, DdSdS. (14)

where G*=(x, ¥) are the two Green’s functions which we
introduced before, and which possess the reciprocal
property

GHx, &) = G7(§ x)

We need one further assumption based upon the
linearized free-surface condition. This is that, to first
order,

vi(x) = —v(x)

on the body. This scems consistent with the assumption
of o small disturbance on the free surface, for if the waves
are small, the effect of the free surface on the flow at the
body is small, and thus to first order the steady velocity
“on the body is an odd function of the stream velocity ¢, as
is the case for a body in a wave-free field.

Substituting v— = —v+ and

G=(x, &) = G+ x),
it follows that

Bij_ = 2% Imf " fi(x>(2'w — V+<X> : V;r)

ff LB w4+ vHE) - v )G HE, x)dSdS,

or, after interchanging the integrals and the variables of
integration and comparing the resulting expression with
(1),

Bij— = Bji+ (15)

It should be noted that up to this point in the analysis,
no assumption has been made regarding the symmetry of
the body. Thus (15) holds for asymmetric bodies and,
in particular, it follows that the six principal damping co-
efficients B;; are independent of the direction of forward
motion. Of greater practical importance is the fact that
if there is no forward speed, B;* and B;;~ must be the
same, and therefore B, = B;; when ¢ = (. This result
has also been obtained by Haskind [11] and confirms
the frequent argument based upon strip theory.

Now we consider the physical relations between Bj;*
and By, assuming that the ship is symmetrical. For
example, the pitch moment of a symmetrical body due to
heave and heave force due to pitch are odd functions of
the forward velocity, since changing the direction of the
flow is equivalent to looking at the body from the op-
posite side and changing the sign of rotation about the
pitch axis. Examination of all of the coefficients in this
manner yields the following conclusions:



Table 1 - Matrix of Symmetry Properties of Damping Cross-Coupling Coefficients
Surge Sway Heave Roll Pitch Yaw
i=1 =2 j=3  j=4 j=5  j=6

Surge force

i=1 By Bi=0 By= —~By Bu=0 Bys = By By =0
Sway force

i=2 By =0 Bzz Byx= 0 Bu = B42 By =0 B:ze = — B
Heave force

1=3 B.n = ”‘Bxa By =0 Bxs B =0 B3 = — B3 Bxs =0
Roll moment

1= 4 Bu=90 B = By Buy=0 B, By =0 Bis = — Bas
Pitech moment

1 =135 By = Bis B =0 B = —Bs B3 =0 Bss By =0
Yaw moment

1 =6 Be =0 By = —By  Ba Be = —Byg Be = Bes

1 The six coefficients Bj; and the nine coefficients
Biz, Bis, Bis, Bas, Bas, Baz, Bs1, Bsz, and By are even functions
of the forward velocity ¢.

2 The twelve coefficients By, Bis, Bas, Bai, Ba, B,
By, Bis, Bis, Bss, Bez, and B are odd functions of c.

3 'The nine coefficients Bgl, Bzg, st, B41, B43, B;s, Bm,
Bes, and Bgs are all zero by symmetry; i.e., there are no
transverse forces or moments due to longitudinal oscilla-
tions.

Combining these conclusions with equation (15) it
follows that:

4 The sum By + Bj;; = 0 for all cross-coupling co-
efficients except Bis + Bu (surge and pitch) and By +
By (roll and sway), where B;; — B;; = 0.

5 Half of the cross-coupling coefficients are zero
(those listed under statement 3 plus their complementary
members). Furthermore this conclusion holds for an
asymmetric body as well, since statement 3 and equation
(15) are valid without the assumption of longitudinal
symmetry.

Discussion of Resulis

The symmetry properties of the damping coefficients
for a symmetrical ship are shown in Table 1. For the
cross-coupling coeflicients it is seen that By + By = 0
except for coupling between pitch and surge, where
Bis = Be, and for coupling between roll and sway, where
Bi, = By These results are consistent with the con-
clusions based upon thin-ship theory [1, 4, 5, 6], but the
present derivation is valid for all thirty cross-coupling
damping coeflicients and does not require that the ship be
thin. We have, however, assumed that the waves
created by the forward motion are small, and this implies
that the body is either thin, slender, or deeply submerged.
Nevertheless the analysis and conclusions also hold for
Havelock’s [3] mathematical model of a nonslender body
with a rigid free surface, which may correspond physically
to very slow forward speed and a low frequency of
oscillations. »

There does not appear to be sufficient experimental
evidence to support these conclusions completely, but
the oscillator experiments of Gerritsma [12] and Golovato
[13] are strongly suggestive of the equivalence between

6

Gerritsma has
measured the coefficients By and Bs; for a Series 60 model.
Since this hull is not longitudinally symmetric, the

the pitch and heave coupling coefficients.

present theory is not strictly valid. Following a sugges-
tion of Vossers [2], however; we may separate the cross-
coupling coefficients into two parts

Bij = BUI + Bi]‘n

where B! is the value of By, at zero forward speed and
B! is the difference due to the effects of forward speed.
Trom equation (15) it follows that (even for an asym-
metric body)

I I
Bij - Bji

If the ship is only slightly asymmetrie, the effects of the
asymmetry on the coefficients B, will be small and thus,
approximately,

I _ I
By’ = —By

-

The experimental results in Fig. 5 of reference [12] do
not confirm this relation exactly, but they do suggest,
especially at the higher frequencies and spéeds, that this
is a meaningful approximation for a slightly asymmetric
ship.

Experimental measurements of By and Bs; have been
made for a symmetrical hull by Golovato (the results of
the pitch experiments are unpublished), who found that
these two coefficients were approximately equal and
opposite, with a maximum difference of about 10 per cent
over a fairly wide range of speeds and frequencies.

With regard to the derivation of this theory an im-
portant result is the effect of the steady flow field on the
oscillatory potential. In equation (9) this effect is seen
to be a tangential dipole distribution, equal in strength
to the product of the steady velocity and the normal os-
cillatory displacement. The consideration of this effect
is vital to the present analysis as it is directly responsible
for the symmetry properties of the cross-coupling co-
efficients. Physically this implies that the problem of an
oscillating body in a moving fluid is not the same, even
in the linearized sense, as the problem of a fixed body
with the same distribution of normal velocity, for there is
an additional effect from moving about in the steady
flow field. .
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