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Abstract

The author discusses on the the minimum problem of the wave resistance of
three types of the singularity distribution.

He finds no minimum solution in general, but in the cases with some restrictions.
He points out also the difficulty of the numerieal ecomputation, and asserts that there
may be quasi-waveless solutions.

The principal idea of this paper is based on the fact that a singularity distribu-
tion gives a value of wave resistance, but inversely a value of wave resistance does
not correspond to one distribution but to infinitely many ones. This is said exactly
in the former paper and approximately in the present.

Introduction. The problem to minimize the wave making resistance of ships has made
a great progress in recent works, but also thrown back many questions to the theory®:10,

The author intends to pick up and find cut their difficulties as far as possible.

First of all, we must classificate problems and questions.

The problems are distinguished by the types of ships and the types of minimum condi-
tions, Firstly, we consider three cases for the types of ships, or mathematically, of their
singularity distribution.

I a) Mitchell-Havelock distributions for the model of displacement ships!?®,
b} pressure distributions for surface ships,
¢} submerged ships.

Secondly, our minimum proplem assumes naturally the given velocity and length or
Froude number, and the given displacement or total sum of the singularity distribution of
the given type.

Under these circumstances, problems are considered for which
II a) A) there is not another restriction,

B) the moment of the distribution is given,
C) the second moment is given.

These conditions are concerned with integrated quantities of the distribution, but by the
familiar notation to naval architects we may ask the next problem,

II b) under the same conditions as I a) A}, the block coefficient must be taken as a given
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value®,

Since the displacement is given, assuming the given drafi, this condition determines
the breadth. This is not of integrated quantity, so that this nroblem may differ from the
ones described above.

Lastly, we ask the following questions for these problems.

1) Have the minimum problem a solution?

This is a question partly solved by S. Karp and others'”, so that we may ask as “In
which cases the problem has a solution??.

2) If we have the solution, is it uniquely determined?

G. Weinblum and others have described the instability of their numerical solution, that
18, they obtained fairly different minimum ship forms respectively®. From what cause such
phenomenon appears?

3) In these connection, we must remind the theory of the waveless ship by T. Inui®. If
a ship would have no wsve resistance, then has the minimum problem their meaning?

What is the relation between the minimum wave resistance ship form and the waveless
ship form?

These are concerns of the author, and he discusses them under the various types of
distributions cited above.

Chapter 1. Submerged ship

The wave resistance of a submerged ship is somewhat simpler than the usual floating
ship, and discussed in detail numerically and theoretically in the literaturesV,

In all of those works, they have diseussed with doublet distributions on the given seg-
ment of the longitudinal axis.

Hence, we suffice too with such simplified treatment.

1.1 Influence function. Consider the water flow of unit velocity, and take the origin
of the coordinates at the eenter of the doublet distribution oceupying the segment |xi=1,
submerged under the water surface with immersion f, x-axis horizontally and upper steam
direction, z-axis vertically upwards.

The wave resistance of the distribution is given by the formula'’,

[

" z
R:Efﬂj | F(g sec ¢, A)* sec® Bt (L.L1)
~ Jo

1
Pk, ff}Zj H{zg)ye =/ -ixacostdy | (1.1.2)
1

where p is the water density and g the gravity constant of our unit system, and so Froude
number, F'r., based on the ship length equals to 1/4/2g.
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H(x) equals approximately to the sectional area as usually known.

Now, if we add a small quantity JH(z) to H(z) in the vicinity of #, neglecting higher
-order term, the wave resistance will increase AR,

Taking the variation of (1.1.1), we have

AR=2pgG{x) AH(z) % , (1.1.3)

and
g % s o sect gige
G(x)=Re. —_;J Fg sec? §, §) g v/ sect 0+igvsecd gans g dg
T Jo

=C[" me P8 20z, (114

where the function P_s i3 seen in Appendix A,
Hence, the function G{z) tells us the wave resistance variation for small variation of
the distribution. We will call G(x) hereafter the influence function according to E. Hogner?,
We may write now (1.1.1) with the aid of this function as

R:pggl 6@ Ha)ds. (LL5)

Now let us consider the minimum problem II) a A).

Then the wave resistance must be stationary for any variation of the distribution.
Accordingly, we can assert the influence function must be constant over the length of dis-
tribution, that is,

Gy=C. (1.1.6)

Write the displacement volume or total sum of the distribution as

7= jl H)dz . (L.1.7)

If (1.1.6) would hold good, then the wave resistance might be from (1.1.5)
R =pgC, (1.1.8)

8o that € must be positive.

Thus, the problem reduces to solve the integral equation (1.1.6) with (1.1.4)

Now, the kernel P_; in (1.1.4} is regular in z, therefore G{z) is to be regular in z too,
.assumed the integrability of the right hand expression.

If G{x) would be constant in [x]<1, and it might be constant at infinity too. But
P_y(gx,2gf) vanishes at infinity, so that we may conclude this constant to be zero, There-
fore H{x) should be zero identically.

Namely, we have no solution of the problem except the one vanishing identically.
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However, the integral equation (1.1.6) with (1.1.4) might have a solution numerically in
almost every ecase, in fact, G. Weinblum sclved those problems?. What is the relation
between the fact that there are those numerieal solutions and the fact that the minimum
solution is to be identically zero?

1.2 Quasi-waveless solution. If there is no minimum value of the wave resistance, it
seems that the least value might be zero.

In fact, we will show the wave resistance to make small at our disposal.

Consider the next distribution

cos 2n#
H(x)“ = U2

. x=—cosf, (1.2.1)
=0 sing

Since the kernel of (1.1.4) is expanded as (A. 10), integrating term by term, we have

s L (—l)ngsznz+_(2gf}x" ey
=g by 2y L
(=X B S T@rln+m—nim—n-—ni

n={
o - (g2)®" n
=g3§0(—1) (2”)1 _I( 1) a"’nC2n 2ry (1‘2'2)
where
Cenr=(0/2 5y (~1y(g/20 L2 (1.23)

Now, taking a sufficiently large integer N, and put

=]

3} (—1)"8,Con,2e=0,  for 7=0,++,(N-1). (1.2.4)

n=U

Then we have from (1.2.2)

¥
G(zx)=g°0 F(g?\)fjf] . (1.2.5)

Therefore, since the series expansion {1.2.2) is shown convergent, this value will be
sufficiently small by selecting appropriately large N.

Take M unknown a,’s (M >N), and we have a solution except (M—N+1) undetermined
cocflicients, for we have (N+1) equations (1.2.4) with (1.1.7).

If the influence function would be small, and the wave resistance might be small by
(1.1.5).

Thus, we may have many solutions by appropriate selections of M and N, and reduce
the wave resistance smaller at our disposal.

In these circumstances, we call these solutions quasi-waveless for a convenience.

However, we can not expect that the solutions obtained converge to a definite distribu-
tion, because the minimum solution should be zero identically.
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1.3 The case of small immersion. The numerical computations of the above method
will be very laborious when the immersion is small. There is another method to obtain the
distributions with the smaller wave resistance.

Define the function

rw=_ | BOP.(05=2 20z, (13.0)
(d/d:c}‘l“(x‘) =G(x), {1.3.2)
If we put with arbitrary constants a, as

I'e)=ay+a o+as 22 +asa?, (1.3.3)

then we have by (1.3.2)
G(x)=0, (1.3.4)

and so by (1.1.5)

E=0, {(1.3.5)

The integral equation (1.3.1) with (1.8.3) has a solution numerically in almost every
cases, but may be shown to have only identically vanishing solution by the same way as in
§ 1.1 theoretically.

Meanwhile, if the immersion tends to zero, the integral equation has a solution not
identically zero by Appendix B.

Accordingly, when the immersion becomes small enough, we may expect a solution like
‘the one in its limit.

And now we call these solutions quasi-waveless too.

Chapter 2. Mitchell-Havelock type distribation!?

We consider the doublet distribution over the rectangle on the —z plane, and similates
‘the displacement ship.

2.1 General discussion. The wave resistance is the same form as (1.1.1) with
a 1
Flx, 0)=5 j Hz, 2) e 10030 dn | @.1.1)
- 1

where ¢ is the ratio of the draft to the half length, and H{z,2) equals approximately to
the breadth of the ship.
Define the influence function as (1.1.4},

g3 L] 1 —n I
G, z>=—j j HE OP.(95F, ~gaTDdide, @12

T

then the wave resistance is written as
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(2.1.3)

0 1
R:pgj j Hiz, G, 2)dedz .
—td -1

The minimum value is attained, when
Gz, 2)=C" Constant, (2.1.4)
under the condition
el
F’:‘ \ Hix,2idedz . {2.1.5)
o=l =1
Then
R =prg C. (2.1.6)
(2.1.7)

At first, we have the next differential equaticn from (A. 2},

Morecver, introduce the auxiliary function veniching ot x==occ by the next equation’™
(2.1.8}

A o
H,9=(-L-— . Jote.n),
2.1.9)

and we may write
g S
Gle,2)= :j (&, 0P (g T, —g2) dE .

Since the above formula is regular in # with the appropriate class of the function o,
we will deduce the same conclusion as of the preceding chaper.

In fact, if we pick up the distributions uniform in z and represented by Fourier trans-

(2.1.16)

Fle, =0,
we may have waveless distributions extending to infinity but confined practically in l#[<1

forms of functions which have the next quality
for «>g,
Thus, it seems that the minimum problem has no solu-

by suitable combinations of such funetions®.
10).

2.2 The case of infinite draft.
tion in general, but this fact does not hold always in more restricted cases.
Consider that the distribution is uriform in 2z and extends to infinitely great depth, and
this is the eaze dizcussed by S. Karp and cthers mathematically and solved numerically

Here, we consider it analytically in more detail.
(2.2.1)

Integrating (2.1.2) and (2.1.3), we have
eo=o = (89%/B)

;’EZW
‘“2'(/)

gl Hg)Mx)da,
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where

ro=25| mor.ozgna, 2.22)

Assume the next expansion by Mathieu functions, hereafter we follow the notations of
the text by McLachlan®,

B =)
H{—cos wzﬁn_b‘ an,,. ce.(d, @), g=g%/4. (2.2.3)

Then, the mean breadth defined as

= 10t
B-—-—z«s_lH(a:) dz | @.2.9)

proposes a condition between the coefficients in (2.2.8), that is,
Sty AP = 2/ 2.25)
1}

=

By the way, define the next quantity

3=B/H©0)=1 / [ 3 anncens(s/2, q)j', 2.2.6)

this equals approximately to the water plane area coefficient.
Moreover, we define the first and second moment as follows,

1 oo
j He)ado=—4Bx,  a=(n/8) 50 AP, @2.7
-1 A=

1 . o

j H)etdz=8Bm?,  mP=1/8+(z/32) Slay, AG™ . 2.2.8)
-1 =0

Now, put (2.2.3) into (2.2.2) and use (B. 13), we have

I(=cos 0)= 3 pu0ncen(t, ). @2.9)

Owing to the orthogonality of Mathieu functions, the wave resistance is written from
{2.2.1) with this equation as

60 = 40" 3] pmat . (2.2.10)

Hence, the minimum problem reduces to a simple caleulation.
A) Obtain the minimum of (2.2.10) under thg) condition (2.2.5).

As explaned in the preceding chapter or obtained by Lagrange’s method, we have it,
when
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I{—~cosi=4i: Constant,
then
e. = 16¢°2.

Since

< AP, ¢)=1/2,

n=0
comparing with (2.2.9), we have
a2u+1:0 r C[g”=qﬂA‘0:H\/,u:,!Ea,§:,; ]

Putting this into (2.2.5), we have the constant, that is,

A=1/(=Co.¢) Co o= [AV" T/ trm

n=0

putting this value into (2.2.12),
cw=1eg:/(:cﬁ, Q)ECwo -
Lastly, the coefficient by (2.2.6) becomes

o= :Cm D/2D0:—-;aﬂ f D0= E A(O:d)ce'.’u(:/z; Q)/Pzﬂ .

=y

B) Solve the same problem with the other condition (2.2.7).
It is to be, by Lagrange’s method,

I'{—cost)=2-+2c080 .

Then,
€, =16g%%, +32g° /s ,

The constant 2; is given by (2.2.14) as easily seen, and since
cos fi= E A(1,2"+1)332ne1(01 Q) 3
n=0

comparing with (2.2.9), we have

(2nri}

aZn+1=)'2A1 /#2’!+l 1

and that from (2.2.7)
2=8a/(=Ci,2},  Cia= §0[A52“+1>]2/p2n+1 :

When we write as

o
[
—
=

el

(2.2,12)

(2.2.13)

{2.2.15)

(2.2.16)

2.2.17)

(2.2.18)

(2.2.19)

(2.2.20)
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Cu, =169%/(=C\, 1), (2.2.21)
we have from (2.2.18) with (2.2.15) finally
Co=Cuy+ 16a°Cu, . (2.2.22)
C) Consider A problem with the other condition (2.2.8), then we have in the same way,
I'{—cost)=4+Acos27, (2.2.23)
and
¢ =160%(A—A2) +128g° 4 m? . (2.2.24)

Since

oo
cos 2= E Agzgn) ce2rz(ﬂl Q) *

iy
we have the coefficients in like manner as in A), that is,
B =0,  @oy=[220 AFO+ 2 AP/ pran « (2.2.25)
Using these formulae, we have
A=1/(zCy 0)=2y Co,s/(zd)y,  2=2Cs,/{zd}, (2.2.26)
where
7 =16(m*—my), (2.2.27)
my is the value of (2.2.8) taken for the szolution A, namely
mi=1/8+Cy,./(16Cy, ¢} , {2.2.28)

and
A=Cy,4Cs,2—Cs'2

Cox= SLAFV AL pn,  Cox= 3 [AET i, (2.2.29)
Then, we have from (2.2.25) with (2.2.15)
Co=Cuwy+ 7 Cus (2.2.30)
where
Cuy =162 Cy, o/ (z4) , (2.2.31)

Here, we rewrite (2.2.25) as

af2n=a'2*n+rbg=u 1

2 - . (2.2.32)
e [Co,0 AT —Cy, 2 AF™]

b=



Table
4q 1 4 10 16 24 36 50 64 80 100
g 1 2 V10 -4 24 6 V50 8 80 10
Fr, 0.7071 0.500 0.3976 0.3536 0.3195 0.2887 0.2859 0.2500 0.2364 0.2236
o 0.644094 | 0.998125(1) | 0.814806(2) | 0.132126(2) | 0.193168(3) | 0.189457(4) | 0.202547(5) | 0.294995(6) 1 0.419816(7) | 0.478425(8)
H 1.096150 | 0.732746 0.194796 0.470898 0.851693(2) | 0.992818(3) | 0.122314(3) | 0.199029(4) | 0.313925(5) | 0.397238(6)
I 0.547239 | 0.686380 0.662995 0.397181 0.138960 0.234523(1) | 0.342655(2) | 0.624663(3) | 0.109448(3) | 0.154365(4)
Ha 0.344356 | 0.385909 0.500315 0.582640 0.510346 0.227603 0.547913(1) | 0.120592(1) | 0.237545(2) | 0.373999(3)
e 0.254270 | 0.268533 0.306237 0.360255 0.448653 . | 0.495383 0.320119 0.128702 0.344321(1) | 0,634796(2)
Hs 0.202118 | 0.208842 0.224495 0.244169 0.279845 0.358126 0.442317 0.402119 0.230729 0.712211(1)
He 0.167868 | 0.171617 0.179844 0.189269 0.204374 0.235323 0.290597 0.362817 0.406359 0.305693
He — 0.1456917 0.150846 0.156245 0.164335 0.179028 0.202103 0.235452 0.290416 0.363293
Hs — 0.127026 0.130230 0.133654 0.138613 0.147071 0.159004 0.174202 0.197839 0.241970
Cw 6.5518 4.4226 1.1384 0.84299 0.85324(1) | 0.34156(1) | 0.23083(2) | 0.46094(3) | 0.87TIT1(4) | 0.13191(4)
Cuws 2.789 12.73 23.60 20.36 12.01 4.566 1.441 0.4719 0.1398 0.0330
da 1.606 1.114 5.7960 0.6827 0.6039 0.5378 6.4910 0.4591 0.4323 0.4074
Mo 0.7109 0.6358 0.5371 0.4837 0.4401 0.3997 0.3694 0.3480 0.3208 0.3123
16cws/g* | 44.60 25.46 11.94 5.090 1.636 0.3349 0.8522(1) 0.1475(1) 0.3126(2) 0.0528(3)
€p 0.5917 0.6031 0.6078 0.5813 0.5409 0.4931 0.4566 0.4305 0.4085 (.3869
0.5| 20.26 53.46 46.35 12.26 1.639 0.6213(1) ;‘0.2905(2) 0.3574(2) 1§ 0.2083(2) | 0.7T18R(3)
¢ 5_0.6 14.43 28.29 14.90 2,038 0.8688(1) | 0.1046 [ 0.6283(1) | 0.2610(1) | 0.8602(2) | 0.2134(2)
wi¥T0.7] 11.24 15.80 3.563 0.3974 0.7623 0.4658 0.1657 0.5553(1) | 0.1603(1) | 0.360%(2)
0.8| 9.39% 9.438 1.142 2.261 2.224 0.9176 0.2758 0.8488(1) | 0.2312(1) | 0.4970(2)
0.5-2.2170 |-1.963 -1.384 -0.7648 -0.3596 -{.1025 0.0204 0.0812 0.1196 0.1462
5_0.6 -1.6803 |-1.369 -0.7638 -0.2885 -0.0114 0.1407 0.2049 0.2331 0.2471 0.2534
F19=0.7-1.2971  |-0.9456 -0.3206 0.0517 0.2374 0.3145 0.3367 0.3416 0.3381 0.3300
0.8-1.0096 |-0.6277 0.0118 0.3069 0.4240 0.4448 0.4356 0.4230 0.4064 0.3874
ay 0.89565 | (.93186 1.05195 1.13513 1.20958 1.28477 1.34651 1.39366 1.43700 1.48113
a¥ 0.09266 | 0.04368 0.00792 0.00236 0.00141 0.00088 0.00065 6.00052 0.00043 0.00035
af 0.00105 | 0.00263 0.00151 0.00061 0.00017 0.006003 y 0.00001 ¢.00000 0.00000 0.00000
a¥ 0.00001 | 0.00003 €.00005 £.00039 0.00002 0.00001 i 0.00000 0.0000) 0.00000 0.00000
* —-0.05666 -0.19362 -0.32323 —(.58490 -0.45604 ~0.55957 ~0.67128 ~(. 77320 —(0.88073 -1.00420
o 0.63372 | 0.59764 0.50740 0.47106 0.50503 0.63798 | 0.80724 0.96082 1.11919 1.20827
b¥ 0.02856 | 0.12674 (.23008 0.18878 0.09742 0.03211 10.,01299 0.00828 0.00669 0.00591
* $¢.00021 | 0.00366 0.01698 0.04590 0.02089 0.01157 | 0.00455 0.00157 0.00047 0.00014
* 0.00000 | 0.00004 (.00006 0.00101 0.00135 0.00116 | 0.00058 0.00037 0.00016 —

The numbers (n) in parenthesis indicate that the results must be multiplied by 10-", for example 0.3441(2) moans 0.003441,

01

oHSsag "I
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We show some values calculated by the tables of Mathieu functions in Table and Figure,

in which the values of ¢. refer to the quantity 4, more familiar than r, with the aid of
the next formula,

1/0“=1/30+2}’(CQ|0D3—CO,QDU)/(R‘J\, (22.33)
where d; is given by (2.2.16), and

D=3 A%¢e, (7/2, q¥/ 1 . (2.2.34)
n=0
2.2.1 Approximate relations. Let us

consider the approximate relations by making
use of the results given in Appendix C.

At first, suppose ¢ is sufficiently small,
then

A) A#% log 4/rg), }
af=2y2/x, a%=0, for n>1,
2.2.1.1)
H{—cos#)=2/(z=sin ), 2.2.1.9)
and
. 32¢° .
Curo log (4/vg), log y=C: Euler’s Const. (2.2.1.8)
with
do =a/2, (2.2.1.4)

This is the case considered by 8. Karp and others'?,

B) Ab=da/zr, a,=8a/z, ai.,:=0, for n>1, (2.2.1.5)

and
Cuy 128g2/7f . (2.2-1.6)

In the same way, we may obtain the approximate values for the problem C. However,
since we neglect higher order terms in (2.2.1.1) to (2.2.1.4), we cannot expect their accuracy
up to the degree written down.

In other words, as seen in (2.2.1.6) compared with (2.2.1.3), the longitudinal variation
of the displacement distribution does not affect appreciably to the wave resistance in very
high speed.

Secondly, suppose g is very large, then we can observe in the Table that the wave re-
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sistance correspond to Mathieu function of lower order is exceedingly smaller than the one
of higher order when the order is not so large.

Hence, we have an almost minimum value whenever we take for the distribution a
Mathieu funection of lower order as far as possible,

Asymptotic characters of various quantities are as follows;

A) af=(zg)i/x, at=0, for n>1, (2.2,1.7)
Cwo=049% exp. (—2¢), 2.2.1.8)
do=A=/20) , (2.2.1.9)

B) Cio == 6404 exp. (—29) , (2.2.1,10)

) ¢w: =16g° exp. (—29) , (2.2.1.11)
mi=1/(49), (2.2.1.12)

and
3= T / (1_%9) ) (2.2.1.13)

Owing to their exponential term, these values of the wave resistance are very small
compared with the existing ones in very low speed in spite of infinite draft.

2.2.2 The problem II b). Consider the problem to minimize the wave resistance with
given B or 5. This is the problem considered by G. Weinblum?®.

Introduce Lagrange’s constants and proceed in usual manner, we have

Az = [221 A(Ozn}'i"h cezn(szg Q)]/ﬂzn - (2.2.2.1)

Put this into (2.2,9), the influence function becomes to
I(—cos ) =41+ iocem(x/z, Q) cesnld, 0) - (2.2.2.2)

The last series is rewritten by changing the order of summation and using the ortho-
gonality relations as follows,

i (—1) AF» ALY cos 258

=0

S 00s.(/2 @) ceanld, @)= 3}

=0 r=

_1 + 33(—1) cos 2rd

- _2- =0

sin (2N+1)(0—x/2)
[ sin (f—=/2) ] (2.2.2.3)

3 i[_\ﬂﬂ

=1 yim
2 Now
This series does not converge to any smooth function, however N becomes large. The same
difficulty will appear in the case of which H{z) vanishes at end points.
Accordingly, we may expect that the numerieal solution in these cases will show the
instability as observed by G. Weinblum®,
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Meanwhile, the wave resistance converges to a finite value, namely, putting (2.2.2.3)
into (2.2.1), we have by making use of Dirichlet integral,
czu=892(211+522/243) ’

and then determining the constants from (2.2.5) and (2.2.6), finally

2
Ciy=Cuwp+4rg* Cﬂ, n(% - } ) /(Cn 0 E—DS) f (2.2.2.4)
\¢ 0y
where
E= 2 loean(r/2, )1/ bz (2.2.2.5)
n=
2.3 The case of finite draft. The preceding analysis is very clear and easy to compute

numerically, but unfortunately usual ships have very shallow draft and it seems hardly to
apply such results.

Therefore, consider the case of the distribution draftwise uniform and of their draft ¢
for a moment.

We have in the same manner as in the preceding the wave resistance coefficient as

- %—Y_l Hx) F(@)de, 2.3.1)
where

I'x)= ;gﬁ _jl—lH(E)KA(gIE_--é, atde, (2.3.2)
with

K (u,7)=P_(u,0)—2P_,(u, 1)+ P_\(u, 2¢) . (2.3.8)

Owing to the singularity of this kernel, we may expect that there will be a minimum
solution, but here we will consider no aceurate numerical value but only some approximate
characters,

Firstly, when the speed is very high and g is small, we cannot treat as in the preced-
ing, because we have no simple approximate expression of (2.3.3) for the usual magnitude
of the draft. But, when the draft is sufficiently small, we have another simple results, and
this problem will be left in §2.4.

Secondly, when g iz sufficiently large and the distribution is expanded by Mathieu fune-
tions as (2.2.3), we have, considered only even functions,

cw=4xgz Z"u 2_0521'; Qom ME?:, 2m 3 (2-3-4)

where



14 M. BessHO
i m=2{_77 B A07 tt,m.?_________] jm(l—e_y’ cosh 62 G, (11, q) Ceum(tt, gy it (2.3.5)
' _Cex ('_'1" 2! Q) CG:;;;(.—./Z, q) ¢
If we put (C. 8) into (2.3.5), we obtain

4‘7“1::!!, 2m : ’(_1) -

Ce?_u(OJ q) cefm(oy q)LEJPEM(gt) ] (2-3-6)

where

L..(gt) =%L_ (1—e #=ee?f) cos 2t/ dd . (2.3.7)

The last function is duduced from the error function as easily seen, and when gt is
sufficiently larger than one,

{0, for =0,

L2lo =11, for 1=0

gl

2.3.8)

Accordingly, the conclusions for the case of infinite draft hold good.

When gt is very small but g is very large, this functions is proportional to vg¢ and of
the same order for », which is not so large.

Hence, the fundamental character, the lower the order of Mathieu function the smaller
the wave resistance, would not change.

2.3.1 Two classes of the wave resistance. The use of Mathieu function is very con-
venient theoretically as explaned, but not for the purpose of numerical computation.

In this circumstance, we remind naturally the simple Fourier expansion.

Assume the next expansion

- § a, cosnt, x=—cosd. {2.3.1.1}
sind <o

Hix)=

Then, we will easily find the next formulae in like manner as (2.3.4),

C“-=892 E E [+ 1 3% Rn, m oy (2.3.1.2)

n=0 =y

where
R, .=Re. i“‘“‘j mJ,,(g cosh u) J.{g cosh u)(1—e 0 o052 =) 2y | (2.3.1.3)
0

Consider that both g and g¢ are very large, and using the assymptotic expansions of
Bessel functions, we have

R, »=0, for (n—m): odd integer,

2.3.1.4
R m#(1/2g)[1+(—1)"§&(2g, 0)+---] . for (n—m): even. @3.1.4)
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Namely, all of the function R, . are nearly equal each other for even or odd suffixes
respectively, which are not so large.
Thence, for example we have, taken N even functions,

N N
Co=80"Ro 0> ) Gonlan, for 2N<«g, (2.3.1.6)

=0 m=u
This vanishes, for example, when
N

gag,,=0, or H{=1)=0, (2.3.1.6)

n=0

namely, ¢, becomes to zero with respect to the order g, but in general not to the lower
order, and at most it will be

ew = 0(1). (2.3.1.8)

Continuing this procedure, we will have the distributions which have sharper ends and
are finer and that their wave resistance of the next order,

c.=0g™ ", n: some positive integer, (2.3.1.8)
These belong to a different class with the exponental ones cbtained in §2.2, and will

be higher than those in increasing g.

And we are easily seen that the distributions represented by polynomials belong also to
this class'?.

2.4 The case of small draft. When the draft is sufficiently small, the minimum pro-
blem has ancther interesting feature.

Assume 4r/u® is very small in (2.3.3), and we have an approximation by (A. 9), that is,

K_\(u, t)=72P_s{u, 0. (2.4.1)
Thence, we may rewrite (2.3.1) and (2.3.2) as follows,
R—_—,oggilﬂ(m) I@)ds, @.4.2)
where
ro=@/| HOP.wE=%0d, @49

and H{z) equals approximately to the sectional area, or if we consider this problem as the
limit of the pressure distribution, it equals to the water head of the lift per unit length.
We write its total sum as

jl Hw)de =0 @.4.4)
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Consider (2.4.3) as the integral equation for the given I'(x), and H{x) may be determined
except the function (B. 11) from the result of Appendix, and that this undetermined fune-
tion contributes nothing to the wave resistance by (2.4.2), because it does not to I'(z).

The waveless distribution can not have a finite displacement'®’, but these can do.

However, the integral of (2.4.3) has not a definite value, if H(z) and its derivatives do
not vanish at end point owing to the singularity of P.;.

These conditions are counted four, and the arbitrary constants in (B. 11) four too, so
that we may have a unique solution.

For the purpose of calculation, rewrite (2.4.2) to (2.4.4), integrating partially,

R= pY_lH"(x) r@de, (2.4.5)
ro=1{ B@P.GT=E 0, 2.46)
V=%5_IH”(m)m2dm, (2.4.7)

with the conditions
H+1)=H'(£1)=0,

or . ) (2.4.8)
j H”(m)dw=g H'@)edz=0,
-1 -1

Assume the expansion

H'(—cos )=F Sdgncesn(0,q),  q=0°/4, 2.4.9)

n=4y
then, (2.4.7) and (2.4.8) are written
1 oo
5 H () do =18 S dpn AFY=0,
1

. = . (2.4.10)
j @) o A= (=7 /4) S do ALV =27 .
-1 =0

Consider the minimum problem under these conditions, and it is solved in the similar
way as the problem C in §2.2, then we have

I™(—cos th= % +72 cos 24 , (2.4.11)
don=(4 AFP+2 AF™) /F pt2a (2.4.12)
A= '—8700, o/ (zd), 32=87Co, o/ (=4}, (2.4.13)

and
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R=4pF2;, or R/[pgF(F/8)1=16c../g*, 2.414)
and that, comparing with (2.2.32), we see
dzn = 455, (2.4.15)

Finally, we define the coefficient, which equals approximately to the prismatic coefficient
of the ship form,

T

c,=F/2H(0), HO)=F uﬁﬂdnj: cen(t, q) cos 9dF . (2.4.16)

These quantities have been studied in detail in § 2.2.1, and values of (2.4.14) and (2.4.16)
are shown in the Table.

Consider here only the case when g is very small, then we have

I*(—cos 8)=(4F/z) cos 28, (2.4.17)
H"(—cos 8)=(87/x) “:;2: ,
(2.4,18)
H(—cos §) #(W/z)(sin 6—% sin 30) ,
R/ pg (F/8)]=128/(=g), {2.4.19)
and
¢, = 3r/16. (2.4.20)

The value of (2.4.19) might be very high compared with the one of (2.2.1.3). Moreover,
it will be seen much higher than that considered in §2.3, when g is very large, but it
should be remembered that the value of (2.4.14) decreases exponentially as g increases, and
8o it will be smaller than the class like (2.8.1.8) in the range of very low speed.

Chapter 3. Pressure distribution

The velocity potential of the pressure distribution is represented by the one of the
doublet in z-direction on the water surface!®, and therefore the wave resistance has the
same form as the one of the preceding chapter.

Thence, the discussion like in § 2.1 might hold generally. We do not repeat here such
discussion, and proceed to simpler cases.

3.1 The distribution with large aspect ratio. Consider the case in which the wave length
generated is sufficiently longer than the longitudinal length of the distribution, so that we
may put as

X plx, y)e et du=pgH(y), 8.1.1)
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where p(x, %) means the pressure per unit area.

Then, we have in the same way as in the preceding chapter,

R=.ﬂgf_1H(y)G(y) dy, (3.1.2)
3

Gly= Q—K:H@?) P_(0,gy-7,0d7g, (3.1.3)

where we take the half breadth for unit length.
The minimum value of (3.1.2) will be attained, when

G(y)=C: Constant, 3.1.4)
under the conditions
v = jl H@)dy, (3.15)
and
H(x+1}=10. (8.1.6)

The last condition is the one by which the integral (3.1.3) has a proper meaning.
The integral equation (3.1.4) is solved in Appendix B, and has the next solution by
{B. 21), that is,

2 (1) QCAF +aces) cesn(8, — )/ n 3.1.7)

H(—cos )= g sint w=o

where @ is an arbitrary constant and g¢=(g/4)%.
Two constants C and a are determined by (3.1.5) and (3.1.6), that is,

3

=% ST (—1)"[4C (AF™P + aczn AF0 /0,
n=0

- (3.1.8)
0= (—1)*(2CAF” +aczr) 020, —q)/d2n -
n=0
Then, the wave resistance is given as
R=pglC. (3.1.9)

If the condition (3.1.6) would be removed, we have a quasi-waveless solution in the
same meaning as in § 2.4.

These are in neat forms mathematically, but not so practical, because the speed range
to be considered for such distributions is generally very high. Hence, consider that g is
sufficiently small, and we may have an approximate sclution by making use of results in
Appendix C, but it is too cumbersome to calculation.

It is easier to calculate by making use of the next approximation
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Kyloy/2) = —log [yoy/4], log y: Euler’s constant,
30

Then, it iz a simple ealculation to find

H{—eos t)=(2F/=)sin ¥, (3.1.10)

C=gr/2z, (3.1,11)
and

R==(4g/7) pg7 (F/8) . (3.1.12)

The solution (3.1.10} was obtained by H. Maruo®, and, as he said, the wave resistance
is very small compared with the ones in the preceding chapter.

3.2 Symmetrical distribution over a circular disc. The last problem we consider is the
case of the distribution symmetrical about the origin over a eircular dise with unit radius.
The wave resistance is given as

R= pg Y | F{g sec® §, )i sect #d@7, @.2.1)

where

o

Fle, )= ;Ej jp(x, y)eireossiusing g doy
Putting ple, y)y=rgH(r), r=Jx*+¥° and integrating on the circle, we have!®
Fle, 6)=Flx) :2,—.5:11@) Jolerywdr | (3.2.2)
Now, if we expand as
s1n —)—~ ?T‘ a,P.(cos ), (3.2.3)

=0

where P, means Legendre function, and put this into (3.2.2), we havei®

P(") 2'; ‘{._la’ﬁ "rz 1(")- (324)

n=u

The displacement is caleulated as

1
F=2z\ HixYrdr=za2, (3.2.5)
« 0
and the wave resistance
R-—p\_‘ \"‘( L a.a. R, (3.2.6)
=0 m=0
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where

(5
Ron=(= 17| ¥ Ty (g €00 0) 30400 s00° 0) s 90 (3:2.7)
T o

For a while, we consider as ¢ is very large.
Then, we have an asymptotic expansion for E, ., when its suffixes are not so large,
that is,

Ron= [1— 2{/?;—9' sin (2g+ %)-ﬁ- . J : (3.2.8)

The situation is similar to the case §2.3.1, so that we may have similar conclusions,
that is, the lower the pressure near the periphery becomes, the smaller the wave resistance
reduces.

Nextly, we introduce the influence function.

1
R=2wpg| HO)GUITdr, (3.2.9)

]

1
G(r)=20| HO") K, )rdr, (3.2.10)

1}

where
K*(r,r)= gzj ; Jol{gr sec? ) Jo(gr’ sec? ¥) sec’ Udd . (3.2.11)
[13

This integral does not converge, therefore intreducing the next function

x

K(r, w):f ® Ji(gr sect ¢) Jy(gr’ sect ) sec 84, 3.2.12)
o

we define it by differentiation as follows,

1 d 1 d
* n__| - _= . r !
K (fr,r)—(r ar 'r)(r, d'r’r )K(fr,r). (3.2.13)
Since
1 T 1 x e -
Jﬁw)Jﬂrcr’):;j Jo(xR) cos god(p=;2.j j givicost aog odedu ,

0 i 0J0
where

R=yr*++%-2rr' cos ¢,
and

T

T LT S =
j ei‘sec-ﬂsecﬁdﬁzezj €5 2"dv=T32 H®(2/2)
¢ ¢
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putting these into (3.2.12), we have

K(r, r)=—1 S E ez reos “H&”(M) cos edgdu . (3.2.14)
4z 0Jo 2
The minimum will be attained when
G(r)=C: Constant, (3.2.15)

under the condition (3.2.5), and given as (3.1.9).

The integral representation of (3.2.14) is not always convenient, but usefull in the Ymit
when g is very small.
Then, we have the next approximation

_'i_ T Reosu oyl 8 ;L (L . ’
yy ez Hf ( 3 R cos u)T ot log 4gR cos }, log y: Euler’s Const.,
so that K(r, ') may be integrated as
n_ 1 [*[" r )
K(r,r)= zxzjﬂjolog(4gR cos % | cos edydu

{r’/(4r), for r>7r', }
r/idr'),  for r<r’,

(3.2,16)

by the well known integral.

Put the above kernel into (3.2.13) and (3.2.10), and consider (3.2.15), then it is integrated
as

1 __,,2 r PN )
SCr=1 SUH('J" yrid, (3.2.17)

The solution of this integral equation is easily found, that is,
Hiry=C/g. (8.2.18)
The constant is determined by (3.2.5), namely
C=gF/r, (8.2.19)
Putting this value into (3,1.9), we have finally
R=(4g/x) poV (F/8) . (3.2.20)

This is coincident with (3.1.12), so that we may have the same resistance in both cases
when the breadth of each distribution is the same. In fact, it is easily found that the
distribution (3.2.18) integrated in % equals to the one of {8.1.10).

Conclusion. We have studied various minimum problems of the wave making resistance
as far as possible, and had conclusions as follows.
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In general, the minimum problem of the wave resistance has no solution, so that
we may always obtain the distribution with smaller resistance than any one theo-
retically.

Since their magnitude will be of various order, we will be necessary to distinguish
them, that is, the singularity distributions which represent some ships should be
classified by the magnitude of their wave resistance.

In some cases, we have the minimum solution, and these solutions present one of
such classes.

It will be expected that the numerical solution may be unstable in various cases.
This is & natural consequence of the conclusion 1., that is, the difference between
any two solutions for one problem might be of the lower order in its numerieal
value of the wave resistance.

These conclusions will be considered one of the extensions of those in the former paper
in which we saw many examples of waveless distributions!®,

The author thanks to Prof. Maruo for his kind discussions and suggestions especially
for the problem of §2.4.
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Appendix A. Auxiliarly functions. We define the functions P, by the next integrals,

ok N
e

Poolz, y, t)zcﬂl)ﬂj

e '8 gin (1 sec &) cos (y sec® ¥ sin ) cos™ 8d4,
1}

(A. 1

Po il 4, t):(—ul)"”j % g rtecd gog {x sec &) cos (¢ sec? ¢ sin #) cos*™™*! #dd ,
o

where £>0 and n, m: integer,

When the confusion does not oceur, we describe as
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P (x,0,0)=P.(x), Pz, 0,1)=Py(x, t).
P,(x) is introduced and discussed by T.H. Havelock”, and P,(z,f} by the author!!’.

Firstly, we have the relations by differentiation
& a
E;BE'P’H_ &?Pn 3
(A. 2)
o"‘-.'+ O‘.;)Pnzo ’
by the above

Nextly we consider only P_,, and then other functions will be derived

relations,
We may write from (A. 1) changing the variable
¢ oo
Pz, y )= Ee"z' Re.j exp. [—p cosh (2u—1y)+1ix cosh u]du ,

where 20=y124+y", tany=y/t and =z, ¥, £>0.

Since
exp. [—zecosh ¢]=1 o(z)+2§;l(—~ 1* I.(z) cosh ne,
and
L= ngﬂ:o e & Ty dv,

putting these into the above representation, we have
Tm b 7
b PS ¢ % Yo(R)dv, (A. 3)

T

20

1
Pwl(x’ Y, t)= _Z‘\/

where
R=\/m2+'vz—2xfu cos 7 .
Expanding Y (E) by the addition thecrem, and integrating term by them, we have two
expansions,
- # oo
Pt D= 57| IO Vele)+ 25 10 Vure) cosr | A 9
1 2 =
Poto 1 D= 50 3| KA @) +2 S KW nle) o8 | (A.

It is easily seen that the former does not converge, but gives asymptotic expansion,
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when 2/(8/y*+1%) is very large,
Thus, if ¢ vanishes in any fixed x, we have

P2, 0,0)= —5 Yal), (A. 6)
Other limits are
1z
P_,{0,0, t):Ee z Ko(t/2), (A. T
1
P_(0,,0)=5 Ko(w/2) (4. 8)

When y vanishes, we have another expansions'’ from (A. 1), as easily seen,

Pute,t)=3 Top, ,0), (A, 9
Pua )= 3 %ﬁm—ﬁ;—l Un_alt),
© (—1)mgtn (A. 10)
Py (2, t)=m2=n “em Un-nalt),
where
Un(t)=(=1)"P_20_1(0, 8}, (A. 11)
The expansion (A. 9) is also asymptotic.
Appendix B. Integral equations. Consider the integral equation
Fo=2{ P T D)g(0)ds, I

This is solved by J. Dérr”, here we give another method to obtain the same result.
Let us evaluate the next integral

i

In(0)=lSnP-1(g cos —cos Dyeen(d, dS,  q=g'/4, B. 1)
L1

where ce, means Mathieu function, and all notations are followed to the text by MecLachlan®.
Since

P_[(:c)=sm cos (x cosh w)du ,
0
by (A. 1), putting into (B. 1) and using next formulae®

cex(7/2, g) j i

Cesnlz, @)= iy cos (g cosh z cos w) cez.(u, @) du ,
:’EAQ 0
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Fey,.(z, )= _Ec%,gg/’%_qls‘“ cos (g cosh z cosh u) Ceq, (1, ) du ,
0 [1]

we have
(2n)
Ton(iz)=— 7t |: Af

2
2| ceanla/2, q)] Feyen(® ),

‘When z is imaginary,

NN )
Re. [Feyo(~if, )= oD e, (9, g),

therefore we have

Izn(ﬂ) = Hon ce?.n(a! Q) ’

__z[ A TFeym(o, 9
Bor= T3 cea(n/ 2 @) | cean(0, @)

In the same way, we have

Lo 1()=prans1 00201100, 9)
_ _E[ kAC12“+1) ]2 Fey2n+1(0: Q) ]
o= T 2| a2/, @) ) " crnnil0, )

In another way, since

'un= %jz In(ﬂ, q) cen(a, Q) da 4

integrating in 4 and ¢, we have

9 AE)Z») 2 ocC 2 d
Hon= [Eé;l(;/ﬁ] 50 e2n(u1 q) U,

EAP+D  re
#2n+1—2|:mm:| L Celrrrlu, ) du .

The similar integral equation
Figh= ;lr-SxP_s(y cos ! —cos ) () dS,
q

are easily solved by the same method as used by J. Dérr™.
Consider the integral

Ive= %jx P_;(g cos #—cos §) ce,(HdF,
[1]

then we have by differentiation of (B. 1)

d

190)= (g5 ) 10),  w=—cos.

(B. 2)

(B. 3)
(B. 47

(B. 57

(B. 6

(ID)

)

{B. 8
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Hence, we have formally by (B. 3)

. y d 4
1o0= 41 g ) eenttha).

(B. 9

However, the solution of (II) does not determined up to the function which becomes to

zero by differentiation as (B. 8), that is,
ai+alctal et talad=ae+ay cos f+a. cos 20 +a, cos 37,
where a's are arbitrary constants.
Sinee®
1=231 AP ee.. (0, q) ,
Ti=U

cos 2ri= 31 Al cen(d, ¢}, for r>1,
=0

cos (2T+1)0‘=§ Enibees, . (f, q),  for r>0,

w=U

the undetermined function will be

co

- 1
3L g, A 42y AT conald, @)+ )
2n

n=0 uw=0M2n+1

(al Aiﬂk+1)+a3 A;2n+1)) ce2'ﬂ+1(ﬁl Q) L]

Nextly, consider the integral equation
f(ﬂ)*-l—jﬁK (2 7 cos:?) (9)d
o o 0 2 cos L2 ,
In like manner ag the former, define the integral
1 s g ————o
Jzn(ff)=?§ K, - €08 fg—cosd | cen(d, —q)dd,
T Jo

where g=(g/4)*=k".

Since
1 n . _1 nAfzn)
;L cos (2k cos ¢ sinh w) cex.(f, —q) d0=%—eﬁ0,—;TC’egn(u, a,
o __1\n 4(2R)

%So cos (2% cosh z sinh ) Ces (1, @) du = -(E‘%F ekzn(z, —q),

and
Y _ FEk?.n(O; HQ) _
Re. [Fek (—16, —q)] = enn0. <0) cez(t, —q),

we have

(B. 10)

(B. 11)

(IID)

(B. 12)
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Jan()=2an ces. (8, —q), ‘ (B. 13)
with
_r[_A8> T Feks0,—q)
A= 2 |: CGZH(OP Q) jl ce2n(0’ —q) ! (B 14)
or
[ A TP, _ fan _ce;»n@_@)]z
"”“Lezn(o, 2 ] Js et au=" ["cem(o, PR (B. 15)
Lastly, consider the equation
1(~ -
FO)== | P-s0, 657,099 d av)
and define the integral
Jzﬁ(ﬁ):“%jzp-s(oy 677, O cesn(, —q)d (B. 16)
where y=—cos #, = —cos J.
Since
(2 (Y .
P_i{0, gy, 0)—5 ¢os <7 sinh 2u) cosh* udu
0
_3 _1 Y/ 2d »
= KtovD— g Kou= (1- % Koy . .17
Hence, we have
2
Fo-5(1- 2 2 )70),
2 g* dy* )
L (B. 18)
JEG)= E(l—g—z W)Jgn(a) .

These are differential equations, so that their solution consists of homogeneous solutions
and a special one.
For example, put in (IV)

F(®=C: Constant, (B. 19)
then we have the solution of (B. 18) as follows,
FH=2C+acosh (gu/y 2), (B. 20)

where a is an arbitrary constant.
Since
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1=2 in(—l)"AS”"’cezn(ﬂ, —q),

and
cosh (g cos d/J7)=2§0(—1)” C2n CC2(f, —q} ,
where
cmw—g—jr cosh (JZ o8 8) cezn(A, -q)dﬂ—7;4;—(80 D Cez,(sinh™1 ' 2, @),

we have the solution of (IV) as

$(0)=2 3% (—~ 1Y @CAT™+ acus) cons( — )/ an

Appendix C. Approximate relations of Mathien functions. Almost all formulae in the
following are found in the texts®®, but some important results not found. That is the

reason why we rewrite them,
Firstly, if ¢(=k* is sufficiently small, we have®

ceold, )=1/y 2, ] ©
cen(l, g)=coamé, for m>1, )
Cen(u, )=phJnlke"), } (©
Feyn(u, Q)= p, Yn(ke*), )
where
Ph=1/[V 20(R)], ph=l/Jalk),  for m>0, (.
and
ceo(0, q) =ceo(n/2, )= AP=1/J 2, } ©
0327:(01 Q)$062n(ﬁ/2, q)#l ] A%2n):=J2n(k) s for 'n21 - )
Then, (B. 4) reduces to
m=—log (yk/2), log 7=C: Egler’s constant, } ©
fin=—(2/2) Ju(k) Ymll)=1/2m, for m>1. )
Even if ¢ is negative, these relations are valid, and so we have from (B. 15)
Am = /2. (C.

Secondly, if g is sufficiently large, but m or % not so large, we have

om+1 zm+1
cen(, ‘1)$mg+10|:6° smﬂ(cog (g + Z)) J-g-gsin e(sm (g + Z)) :| ’ (C.
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Cenlz, g)= ey Jcosh cos [g sinh z—(2m+1) tan-! (tanh %)j',

where

(0, a(7/2,
CZn—( 1)n2211—§-ce2 ( Q)]:‘iz(z,(.;r/ Q) ,

nstomme i C0ns1(0, @) €€hasi(n/2, q)
G =i e BT/

Put # and z equal to zero in (C. 7) and (C. 8), then we have
Cu=2""% ce,(0,q),
and also from (C. 9)

cesn(7/2, @) =(—1)"Jrk AF", }
Cehsi(7/2, @)= (— 1)1 kJrk A@™D

Nextly, integrating (C. T), we have
4 /cen 0, )2 (n 5 ) [Lr2 ik,
AP0/ 0800 1(0, q)i:ez"l"‘(n+%) / [r2n(2ley 1] .

Moreover, we have by the recurrence formula®
AFP=240[—14(8n+2)/Y g +---].
In the neighbourhood of §=x/2, we have the other approximation, that is

cen(t, g ._E:/E/;_ (2, 2=2J% coséd,

where
D) =(—1rei(d/deyme s .

Hence, we have at f=r/2,

cexn(n/2, g)=(—1)"(zk/2}E (20} /(2 nl), }
Clhnir(r/2, )=(— 1" F (xk/2) ) B+ ) /@ 1ml) .

Putting these into (C. 11), we have

AFU=J@n)l /(2 ) 2xk)E], }
AP O =Y @t DT /(@ )2kt T 1,
then, from (C. 12)
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ces, (0, ¢)= /(-2 -)'k (2rk)te

ot {C. 17)
ceznan(0, ¢)= -Wk“%(z. k)e
Lastly, put (C. 8) into (B. 6) and integrate, and we have
.1
Ha ;Ek{cem((). 2,
and by (C. 17) this equals approximately to
20 2* J(z?f)z,k} e, znu#—z—;-—W{“‘, (C. 18)
and also
Ao = (20 (= /2K) /(22 2 (m!)?] (C. 19)



