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Synopsis

There is a variational principle equivalent to the boundary value problem of
a fiow with free surface making use of Lagrangean. In this paper, this principle
is transformed to the one of the doublet or circulation strength. Then, for ex-
ample, it is found that the circulation strength over the free surfrce without
gravity must be constant, Such simple relation enables us to construct a new
integral equation for the flow with free surface.

Introduction

There is a variational principle for the water flow with free surface that Lagrangean
of the actual flow is minimum.? This variational principle can be transformed so that
the variational problem could be equivalent to the boundary value problem.»® This
method is very attractive but seems not to be practical for numerical analysis.®
In this paper, we try to construct a variational principle for the doublet or circulation
distribution over every surfaces equivalent to this boundary value problem. Then, we will
find that the singularity density over free surface is very simple and given by the co-
ordinate of that surface. This knowledge will introduce us to a new integral equation of
this boundary value problem but it will be similar as Trefftz’s® and Zwick’s.*

1. Variational Principle

Let us consider a functional J with respect to a flow outside a body and cavity as in
Fig. 1:99

J=-1-§§ p(g,+2,)dS — & v—-g-“ dudz , $RY
2 )ayr 2 2 Mpyrp-r,

where ¢ means a velocity potential with deoublet distribution z over B and F, that is, the
the body surface and free surface as follows:

a 1

P)=-1 Sjm Q)
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dv Fy
F=F, +F,

z

UNIT
Fy, VELOCITY
Fig. 1.

V the volume of the domain D, that is, the body plus cavity:

Ve g“ﬁdr : (1.3)

g the gravity constant, 7 the vertical location of the free surface and C a constant velocity
velocity defined as

2
%+%q2+0v=% . 1.4

where p means the pressure, p the density of the fluid and
¢=Foyp, (1.5)
O=2+¢. (1.6)

Now, the velocity potential ¢ is regular in D and D by definition and that has a continuous
normal derivative on B and F but jumps its value on crossing B and F as follows:

gt=¢,~ on Band F, (1.7)
p=¢"—&" on B and F, (1.8)

where =+ sign on the shoulder means that its value stands for the one of the outward
domain D (+) or the inner one D (—).
Putting (1.7) and (1.8) into (1.1}, we have

7=\, e tremas— (| serrmias— v L[ e
-

(3 wsr otz -2 {{| wersapte—S{[| s—of[{_va

2
Z__;fm [(V(D+)2—1]d-—?ng (PO —1+c—2gyld- . (1.9)
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When ¢ changes slightly by 8¢ and free surface deflects by v the variation of J becomes

5= SS L Pog+ PO+ de — S S SEVB¢— Po~ds -1 S S (FO PO —ct+2gy150dS

= “ (g +2,)dS — - S S [(FO+— (F O~ +2gy]6vdS , (1.10)
BAF ARRY

where
dp=dg~—ag*, (1.11)

Then the stationary conditions for J are®®

¢.+2,=0 on B and F, (112
and
1 2 -2 _ &
?{(m) — FO ) gy = P (1.13)

If the former condition is satisfied, the inner potential ¢~ must be zero:
P-=z+¢"=0 in D, (114}

because its normal derivative vanishes on B and F and it is regular throughout the finite
domain D.
Hence, by (1.8), we have

p=¢"—dt=—(r+gN)=—0%. (1.15)
Then, the latter condition becomes as

“é"q’—kyy:% on F, (1.16)

which means the constancy of the pressure.
Moreover, the doublet density becomes by (1.12), (1.15) and {1.16) as

1 c? )
~2—(#,2+p12) =-2—-~gv on F, 1.1

where s and { means the orthogonal curvilinear co-ordinates over the surface F.
Inversely, if we assume the doublet density on F as (1.17) beforehand, we have

§J=— SL S +w.)dS — %SL[{(W)L@;)E}
@ (0, — ) (e — (B — e JouddS

- EL Sl +2,)dS + SL (b -+ 1e0)0rdS (1.18)

because it might be ¢ =0on F, that is, # is given by (1.17) and there is the continuity (1.7},
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Then, the stationary conditions of J are
é+x=0 on B, (1.19)
2D+ @~ =0 on F. (1.20)
Since z is not vanish identically, the latter condition means
=0 on F, (1.21)
but this means also that @~ must be identically zero in D and
g=0"—p=-z
that is,
¢ =—g,=¢+ on F. (1.22)

Thence, the constant pressure condition (1.16) is satisfied naturally. In any way, the
stationary value of J is¥®

U= Sj L(Vsé)* dr — ”2;1 v-4 “mrq ydedz . (1.23)

The doublet density over F of (1.17) is determined if the surface F is given and is
very simple. Hence, it may be preferable to select the latter procedure for the practical
analysis.

Moreover, from these observation, we may obtain the following integral equation:

9 1
ovpdver( P, Q)
where 2 on F is to be integrated from (1.17).

In this equation, the unknowns are ¢ en B and the form and location of F. If this
equation is satisfied by some g and F, the conditions (1.12) and (1.14) are fullfilled and
then, by (1.15), (1.16) and (1.17), the pressure condition does also.

It will be seen in the later section that this equation is also consistent with our linear
theory.

The integration of 4 over F by (1.17) may not be so simple for a general surface but
is very simple for a rotationally symmetric flow and a twe-dimensional flow.

Finally it is noticed that the integral equation (1.18) is applicable for a infinite cavity
although the variational problem is not for such case.®®

4 P)= f—gj #Q) dS@)=—u.(P), 1.24)
T B+F#

2. Two-Dimensional Problem

In two-dimensional case, it is preferable and simple to take up the circulation distri-
bution instead of the doublet.

The functional becomes
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]=LS T(¢+2y)ds—-c—=-A—lS iz , @.1)
2 B+rF 2 2 B+Fp=F;
where
‘b(P’:?l"S 7(Q) log #( P, QdS(@) , @2
T Ja+r
A= “_ dzdy , 2.3)
D
and ¢ given also by (1.4) but
=Py, (2.9)
T=¢+y . (2.5)
For the simplicity, let us assume
S 1dS=0, (2.6)
B+F
so that ¢ would be one valued.
From (2.2), we have )
G =T, .M
and
g=¢t ., (2.8)
In a similar way as the preceding, since we have
J=~—-;-SSD[(V¢+)2+2¢,+]dxdy—%“i[(V¢->=+wr+c=—2gy1dxdy. 2.9)
taking the variation as in the preceding, we have
5= SS ST+ d —-1-5 (72— (Pt —ct+2gnlondS , 2.10)
B+F 21lr
where
8T =3, — 8, * , (2.11)

from which we can conclude that the stationary conditions of J are

¢+y=0 on B+F, (2.12)
then
¥-=0, ¢=-—y in D, (2.13)
and
A e .
5 F+gn= 5 - (2.14)

The circulation strength, then, becomes
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2"2=cz_29v . (2-15)

Inversely, if we assume that the circulation strength over F is given by {(2.15), we have
for the stationary conditions of J the boundary condition (2.12) and consequently (2.14) as
in the preceding. The stationary value of J becomes

[J]=%SSD(V¢)2dxdy iaud By % A . (2.16)

4 2 2 SB+FU—-FL

‘Finally, if we put the circulation on F as (2.14), then we have the integral equation for
-this boundary value problem as follows;

(,5:—-—1—-S :’logm’S+—~1—-§ [ ~c2—2g7n 1log rdS=—y , (217
2T Ja 27 Jr

where the sign of ¥ on F is to be determined as the problem becomes appropriate.

.3. Linearization

In general, the variational technique is not so practical that we have had not yet few
examples in application.
The integral equations, however, introduced here are very simple and analogous to
Trefftz's method” and may be practical in application.
Thence, in this section, let us ascertain their validity by comparing their linearized
forms with the well-known ones in the two-dimensional case.
Firstly, let us assume that g=0 and the body is very thin and symmetric as Fig. 2.

Fig. 2.

‘Then, the stream function in (2.17) can be approximated as follows;

S ,(‘)Iog\/(m—ﬁ*%-(y 0 gz LS og\/(m EF+y—n) ge

‘)2+(y+n)2 {(g—EP-+-(y )
_A iy 4. e [° 18y .
.-rS w—tpry L(x g @D

where » means a half breadth of the body or cavity.
“The corresponding potential will be
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* TSN — E! ) (x—E) 3.9
$= So (x—EP+yt - S » (@—8P+y? a. ©.2)
The integral equation (2.17) now becomes
n(2) r cv(w) (£)ds _
Jim =t~ L2 " T e 1D * T i), 33)
or
) 4o, € S" n)dé
1= - = 3.
)+ L S a4 £ IOE (3.9
where
plx)=¢ for —b<a<
=r{z) for a>x>0 } ©.9)
and the improper integrals stand for following values
S _J§ 48 = — d [ S Jds ]_ S
(z—&)° o (2—8 1 w= Ja— E)2+y’°
©On the other hand, the usual linearized boundary conditions for ¢ are®
oz, O)=—nlx) for a>x>0 2.6
oole, 0)=c—1 for —b<a<0 } 6.6

“The integral equation (3.3) is equivalent to the former condition for a>x>0, and also to
the latter one for —b>%>0, because we have, from (3.2) and (3.4},

Palz, 0) = — S. (;’ﬂgz —-;—So b@’%:ﬁ.‘—l for —b<x<0. (3.7

"Thus, although the expression seems different with usual one, the solution of (3.4) must
give the same one as the usual method except that we treat as doublet distribution

=3

Fig. 3.
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instead of a source-sink one.
Secondly, let us imagine a submerged body in a uniform stream of infinite depth as
Fig. 3. Thence, the stream function becomes from (2.17) as

¢(ﬁ,ﬂ)=is TlogrdS——l—-S ~ 1—2g7 logrdS+LS TlogrdS. (3.8)
27 Je 2r Jr 2r Jr

The circulation at the bottom 7T will be uniform and the unit because we assume it lies
at infinitely deep place, and since we could have

S' log v &= e)=+(T+"y)=de-S' log v E=EFF 7'z =0, (3.9)

subtracting this from (3.8) and neglecting higher order terms, we have a linearized form

o

oo, =1 Trogras+ L\ wog v w5 RS 610

— (3—5)54‘?{2 ’

—o0

where it is to be assumed that

S" 2&)de=0 and S 7dS=0. (3.11)
B

The integral equation (2.17) at the free surface gets the from

—og

1ty =L{ riog va—rFas + L | ne)tog lo—side (312

Differentiating by &, mulplying by e'** and integrating both hands, we have

Hk) Ay k)

Alk)y= g’ ®= et (3.13)
where
A(k):g" w)etdz , (3.14)
H(k)=§ Fekviite gy | (3.15)
B
Putting this result into (3.10), we have
=1 _L kg ym AR

P, Y= LTlogrd . LMSXe g e-r*? cos k(e —8) =~ - (3.16)

This is the same expression as the usual linearized stream function.?

Conclusion

We have considered the boundary value problem of a water flow with free surface
and introduced the equivalent variational principle with respect to the doublet or circula-
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tion density over the every boundary surfaces.

Then, we find that its density on a free surface is determined solely by a location
of its surface, especially the circulation must be constant on the cavity surface without
gravity. This fact is deduced naturally if we assume that there is still water outside
the water flow considered, then we must put a singularity density appropriate to cancell
out the dynamical effect of the water flow so that the water outside the domain consid-
ered would be rest.

From these results, we have proposed a new integral equation to solve our boudary
value problem, which is similar as of Trefftz’s and Zwick’s but simpler than them and is
verified that it is equivalent to the theory which we have had when linearized. This
integral equation may fit well to the numerical analysis and may be applied to an infinite
flow, although the wvariational one could not be.

References

1} 1.V, Wehausen and E.V. Laitone: “Surface Waves”, Handbuch der Physik Bd. 9, Springer, 1960.

2) D. Gilberg: *“Jets and Cavity”, Deo.

3) J.C.Luke; *A Variational Principle for a Fluid with a Free Surface”, J. of Fluid Mech, Vol. 27,
1967.

4) W. Zwick: “Zur nichtlinearen Theorie des Wellenwiderstandes fiir kleine Froudesche Zahlen”,
Z.A.M.M,, Bd. 47, 1967.

5) M. Bessho: #Varijational Approach to Steady Ship Wave Problem” To be read at the 8-th Symp.
on Naval Hydrodynamics at Pasadena, 1970.

—329—



