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Abstract

The numerieal data of the solutions of the minimum problem of the wave-making
resistance of the doublet distribution perpendicular to the uniform flow on the line
at the water surface and over the strip extending vertically to the infinite depth are
given,

Under the appropriate conditions, the solutions are determined uniquely in both

cases, and the mimimum value of the wave-making resistance increases rapidly with
the decreasing velocity.

Introduction

The general discussion of the minimum problem of the wave-making resistance was
discussed in the previous paper” and the present problem was also formulated partly in the
same work.

This paper gives the numerical details of the solution of the minimum propelm of the
wave-making resistance of the doublet distribution on the line at the water surface and
over the strip extending to the infinite depth,

The former is a mathematical model of the planing surface and H. Maruo discussed in
detail®~> but here we consider it only in the present point of view.

The latter has no explicit practical application.

1.1 Area distribution

Let us consider the water motion due to the doublet distribution over the area 1=y
2—1 and 0>z>c0, where the water flows down to the negative z-axis with the unit
velocity, its mean surface is taken to be the x—y plane and the z-axis vertically upwards.

Then, the wave making “resistance of this distribution is given by the formula

n/2
R=(pa*)/:rjo | F(g sec? 6, 6) |2 secs 6d0, T1.1)
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26 M. BESSHO

with
0 1
Fk, m:j 5 g, et edy da, 1.2.2)
where p means the water density and g the gravity constant in this unit system and the
distribution is assumed symmetric with respect to the origin.
Moreover, if we assume the distribution uniform in the z-direction, we have by in-
tegrarton

1!::=,o“’z;:§2 X:ﬂ]f(g sect 0 sin §)1* sec 8 6, (1.1.3)
with
Flg)= r_IH(y) exp. (—igy)dy, gq=gsec?®fsind, (1.1.4)
where
B= (l/Z)Lh(y, A)dy, (1.1.5)
and

Hy)=h(y,2/B,
then the condition (1,.1.5) goes to
1
S 1H(:t,v)dy=2. (1.1.8)
Namely, 28 means the total sum of the doublet distribution in any horizotal section.

Let us introduce the wave resistance cosfficient and interchanging the order of the in-
tegration in (1.1.3), we have

R/(oB/8=c.=22¢"|_HWG*W)y, 1.1.7)
with

G*w=a1/20|_ B Klolu—v1/2)3y . (11.8)

Where K means the modified Bessel function.
Now, if we assume the next expansion in Mathieu functions,

Hicos §)y=¢(f)/sind,
( l #Of } (1.1.9)
?(6) =n20a2nce2n(6r _q)r (1=§2/16 r
then we have from (1.1.8) by integration
G*(008 6)= 3 lrtancens@, =), (1.1.10)
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Solutions of Minimum problems of the wave-making resistance of the doublet distribution 27

and

Co=160%x 3 Aonti%en , 1.1.11)
n=0

If we ask the minimum wave-making resistance, we have a solution immediately put-
ting G* a constant, that is,

G*(cos 0)=2=21 2}0(—1)"A(ﬂmceg,.(0, —q). (1.1,12)

Since this must be equal to (1.1.10), we have

Az =22 A5 /Ao =a, , (1.1.13)
and the constant is to be determined by (1.1.6) as

i=1/z4, A= iG(A<2n>)2/zzu. (1.1.14)

Putting these value in (1.1.7), we have finally
Cw==64g%1=64¢*/(zA) . (1.1.165)
The above calculation is very simple, but we must use the table of Mathieu function.

Thence, we write down them by the ordinary trigonometrical expansion.
Once more, if write (1.1.9) as

o(0)= ﬁnazn cos 2n8 (1.1.16)
then
G*(cos 0)=(1/2) ius,,. cos 2mf ioan,zmaz,. i (1.1.17)
m= n=

where &=1 and £,=2 for m20 and

Bipom=(1/ xz)jZSZKo(glcos 8— cos §’|2) cos 2nf cos 2mb’dl d§’
=(1/2) 3} e~ M0/ D0/ ) Ko 0/ D0/
+ Ko g/ D, (0/4]

Buo=43) A (AF ’ (1.1.18)
’ r=0 ?

Bo,2m=32m,o=2(—1)mﬁlgrAﬁmA%? for m>0
=0

an,2m=(—1)“+m%zz,A;aﬂ>A§;. for n, m>0

Especially, in the minimum solution, we have
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G*(c080)=A=(1/2) 3 tznBins

0= 2 a2nan,2m fOI' mgl »
n=0

and the condition (1.1.6) goes to

aO:Z/x .

(1.1.19)

(1.1.20)

The computations are carried out by the latter formula to g=0.4~2.0 and by the former
to g=2~8 and shown in Tables 1, 2, 3 and Fig. 1.

Table 1
g 0.4 08 | 12 | 16 . 20 | 4 Vb ‘ 8
F, 1.118 0.7906 . 0.6455 | 0.5590 | 0.5000 | 0.3536 | 0.2812 } 0.2500
o/zA ¢ 1.5551 © 1.1431 ' 0.9196 | 0.7732 | 0.6683 | 0.4000 | 0.2731 | 0.2222
Cw 7.062  23.41 | 42.38 | 63.34 85.54 | 204.8 349.5 | 455.1
Cwe 8.743 26.80 48.81 72.92 E_Qé._osv Wf 239.3 405.6 524.9
o 0.0995 0.585;; 1.589 3.167 | 5.346 | 25.60 69.08 | 113.8
re* 1.1051 2.570 4.69% | 7.052 | 1025 | 35.74 85.61 | 135.0
a 11.10 | 4.392 2.955 2.227 | 1.919 a 1.396 1.239 1.187
b 10.10 3.392 1.955 1.227 : 0.919 ‘ 0.396 0.239 0.187
ay 0.6366 | 0.6366 | 0.6366 0.6366 | 0.6366 } 0.6366 | 0.6366 | 0.6366
o —0.0124 | —0.0334 3‘—0.0565 ~0.0788 \ ~0.0997 | ~0.1810 | —0.238% | —0.2667
a 0 0 o —0.0003 © —0.0007 | —0.0040 | —0.0098 | —0.0144
as 0 L0 0 0 0 r 0.0001 | —0.0004 | —0.0008
a 0 | o 0 0 0 0 0 0
@a(0) 0.6242 . 0.6032 | 0.5801 | 0.5575 | 0.5362 , 0.4515 | 0.3874 | 0.3546
B 0.6366 | 0.6366 | 0.6366 | 0.6366 ; 0.6366 L 0.6366 | 0.6366 | 0.6366
B 0.0402 | 0.1428 | 0.2887 | 0.3553 | 0.4522 | 0.7808 | 0.9509 | 1.0164
A 0.0002 : 0.0017 . 0.0065 | 0.0199 | 0.0301 | 0,1612 | 0.3480 | 0.4668
B 0 0 | 0.0001 | 0.0003 | 0.0008 | 0.0137 | 0.0632 | 0.1177
Bs 0 b0 0 0 0 0.0006 0.0068 0.0175
Bu 0 L0 0 0 0 0 0.0001 | 0.0003
@1(0) 0.6860 | 0.7811 | 0.8769 | 1.0120 | 1.1196 | 1.5928 | 2.0065 | 2.2553

—104—




Solutions of Minimum problems of the wave-making resistance of the doublet distribution 29
Table 2
g 0.4 08 | 12 | 18 2 4 | VD 8
F, | 118 | 07506 | 0.6455 ""__6255_96"3{ 0.5000 | 0.3536 \ 0.2812 | 0,250
Boo | 2.4286 | 179628 | 1.44648 | 1.21824  1.06549 | 0.64512 | 0.45400 © 0.37744
Bos | 0.00487 | 0.01295 | 0.02159 | 0.02961 . 0.03672 | 0.05874 | 0.08660 : 0.06724
Bou | O 0.00003 | 0.00011 | 0.00027 I 0.00050 | 0.00278 } 0.00648 ' 0.00904
Boa | 0 10 '|70' 0 o_ | 0.00006 | 0.00036 0.00074
Beo | 0.24020 | 0.24691 | 0.24347 0.2391-6_; 0.23428 | 0.20646 = 0.17696 | 0.15062
Be. | 0.0002L | 0.00041 | 0.00089  0.00172 | 0.00231 | 0.00717 . 0.01273 \ 0.01592
Bo |0 |o ___(_)__“_”0.76000175 0.00001 | 0.00017 | 0.00066 | 0.00122
Bue | 01291 | 0.12167 @ 0.12426 © 0.12370 :'*6.12301“ 011787 | 0.10899 | 0.10403
Buc | 0.00002 | 0.00009 | 0.00019 | 0.00038 | 0.00057 | 0.00183 | 0.0038 | 0.00546
B, | 0.08331 | 0.08327 | 0.08812 | ..08206  0.08273 | 0.08111 . 0.07T15  0.07576
Table 3
g 0.25 1 2.5 4
g 2 o 4 vaD 8
R, 05000 o 0.2812 0.2500
A | 0.53008 O 0.3%9% 0.25608 0.22568
n 0.23202 09364 | 0.15043 0.12770
Y 0.12297 0.11737 } 0.10793 0.10006
w 0.084 0.08104 T 0.07189 0.07503
af 0.88814 0.80137 0.6228 . 0.55116
af 01785 0815 0.66966 0.73824
& 0.00177 0.01776 0.08237  0.18168
at 0.00002 0.00021 0.00238 0.00821
ot 0 - 0 o 0.00002 0.00019
5t 0.93649 1.09883 1.28569 1.37913
b 0.87250 0.47674 O 0.3899 0.35853
B ! 0.87250  0.10260 0.13628 | 0.20719
B 0.00106 0.00684 0.02197 0.04676
b¥ 0 o : 0.00021 0.00259 : 0.00547
b% 0 | 0 0.00007 | 0.00025
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Fig. 1.

For a comparisen, if we consider the elliptic distribution which represents approximately
an elliptic cylinder, we obtain putting ao=—a:=2/z,

Cw.=(64g9%/x[ By,0—2Bo:+ B:,27 , (1.1.21)

1.2 Limit in high spced

When the velocity is very high, that is, g is very small, the problem becomes very
simple as the kernel of the integral (1.1.8) plays simply as logarithmic.
We have approximately

By o=log (8/rg)+(g°/16)[log (8/rg)—1/41,
By.=(g/8)*[log (8/r;)—1/21, (1.2.1)
By ,=1/4—g%/192,
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Solutions of Minimum problems of the wave-making resistance of the doublet distribution a1

where log y=0.5772..., Euler’s constant, and then

ao=2/m, an=0 for nz=1
} (1.2.2)

Cw=(64¢*/) log (8/rg) .
For the elliptic distribution, we obtain from (1.1.21)
Cw.=(64¢°/m)[log (8/r)+1/4] . (1.2.8)

Hence, the difference between this and the optimum distribution is not so great.
This value may be compared with the ene of the longitudinal similar distribution in the
reference”, namely,

R/(pB*V¥/L22)=Cwo=8¢2L*/(z V) log (8V*/rgL), {1.2.4)

where V means the advance velocity and L the length of the distribution and 28 the total
sum of the distribution.
Putting the breadth T and the velocity V, we may rewrite (1.2.2) as

R/(pBVY/L2)=Cw=160*T%/(z V*) log (16 V%/rgT) . (1.2.5)
If we preserve B and V, the ratio of the wave-making resistance between them may be
R,/R,;=2log (16 Vi/ygT)/log 8V?/rgL). (1.2.8)

This ratio equals to unity at
T/L=4.2V/~'gL), (1.2.7)

Namely, R; will be greater than R, when T is greater than 4.2(V/vgL)L.
Since the Froude number in our case is very high, this means the extra-ordinary aspect
ratio of the transverse distribution.

1.3 Stream line at the great depth

The foregoing analysis treats only doublet distributions but not actual solid bodies.

To obtain a corresponding body shape from a doublet distribution is a diffieult problem
especially near the water surface, but we may calculate easily stream lines at great depth
where the disturbance of the water wave does not contribute very much.

Now, let us consider the x—y plane and the doublet distribution BH(y) on the segment
lyl=1.

Define the complex velocity potential as
1 H{y")dy'
-1 z—y'

f(z)=1?/nj , (13.1)

where z=z+1y, and introduce the transformation

—107—



32 M. BessHO

z=tcoshu, u=t+if,
y=coshtcosfl, ¥y =cosl’, (1.3.2)
z=—sgink tsind.

Then, assuming the expansion (1.1.16), we have
FLa(t+i8)]=(—iB/sink ) ioam exp (—2nu) .

Hence, the integral equation to determine the stream line is to be

cosh t cos #=B/(sinh? t+sin® O)[sink ¢ cos & hi(t, §) ]
—cosh ¢ sin & ks(t, O],
with
- 1.8.3)
hi(t, )= goaz,.e'z"‘ cos 2nd ,

ho(£, )= ilazne‘z“‘ sin 2nd .

Vs

For example, if we put ay=—a:=2/7 and ay,=0 for n=1, this equation degenerates to

cosh t cos 6=%Be" cosd,

and solved as

t=(1/2) log (%B—l) i (1.8.4)

This equation gives a real positive value of ¢ whenever
Bz=n/4=0.7854. (1.3.5)

And the stream line gives an ellipse with the longer and shorter radius respectively

4 -
(i)
‘;E , ”8 (1.3.6)
and the area
g
2B - <2B,
B-3

If the condition (1.3.5) does not hold, such distribution ean not represent a solid shape,
namely, the transverse distribution necesitates very large B. This is a different point with
the longitudinal one in which case we can always obtain a solid shape with an arbitrary
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large firat term and negligible other termas.

Now, as we obtain in the preceding, the optimum distribution has almost always very
ones vanish.

Thence, we consider nextly the case in which the firast term equals to 2/x and other
The equation (1.3.3) gives

sinh? t+4sin? 0=%}§ tanh t.

To represent a solid body, this equation must have a real positive root for ¢ at 8==/2,
namely, since we may write (1.3.7) as

(1.3.7)

& 2 7\? 2
= ?B> (1—=¥, for x=cosht.

To have a real value of £ from this equation, it must be

Bzav/27 /4=4.081.
Sole stream lines are shown in Fig. 2,

VIa=4

= --“_~~h*~

fal
v2a=3
L5

L 70 = 2.5081

(1.3.8)

for Hy (= 711—_'4'
s—mmeemm Tor Hy ()= VT

l[].5
/X u'zé 5
3
4
x
SF

!
)

1
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316 1T

B 19 70 27 27
4y ——

Fig. 2. Stream lines.

As we pee in these examples, we can not take small value for B, so that the comparison
with the longitudinal distribution as in the preceding paragragh may be understood in very
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restricted sense.

Namely, although its result says that the breadth must be very large for reducing the
wave resistance in our case, but we can not do s0.

This fact suggests that the wave resistance of the transverse distribution is almost al-

ways greater than the corresponding longitudinal distribution.

2.1 Line distribution

Nextly, let us consider an extreme case in which the distribution concentrates ona line
ly[=1 at z=0.

The minimum solution was given in the reference 7), here we repeat it.

The wave resistance is given as (1.1.1), defining the total sum of the distribution

tim [ ('aw, 2 ay a=p @1.1)
z—0 JzJ—1
we may rewrite it as
1
r=R/(or*/9=2]_HWGW) dv, (21.2)
with
_O(_2 @\ ,
6w)=2(1- = 25 6w, 21.3)

where G* is defined by (1.1.8) and H(y) and (1.1.6) and (1.1.9)".
The solution of the minimum problem is the same as in §1.1 and it gives the distribu-
tion (1.1.13) and the wave resistance

r¥=2g%1=2¢%/(xA), 2.1.4)

with 4 and 4 of {1.1.14).
One of the interesting result of the reference 7) is the existence of the quasi-wave free
distribution, that is, if

G*(y)=C cosh (gy/vV'2), (2.1.5)
then
G@)=0 and r*=0,

Such solution is given as follows™.
Sinee we have an expansion

cosh (gy/v/2)= éoe,.rz,, (0/v'2) cos 2nl= éﬂ(—nﬂczncez,,(a, -9,

where 2.1.7)
_ 2(_1)1;‘4821‘)

Cen= cezn(0, 9) Cezu(zo, —q), zo_—_sinh-l 1,
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Solutions of Minimum problems of the wave-making resistance of the doublet distribution 35

we have the solution equating (2.1.5) to (1.1.10) in the form as (1.1.9), namely,
don= C(—l)nCZn/22u . (2.1. 7)
The costant C may be determined arbitrary in general, but we put it a definite value
by the condition (1.1.8), that is,
C=2/xD), D= 3\ Cordf/izn, (21.8)

Now, we write this solution as
Hy(y)=¢+(6)/sin 8
%(0)=§06‘2‘;cem(6. —-q), 2.1.9)
bt =2(—1)"Cen/(wD2sn) ,
and the former solution as
H.(N=¢.0)/sin 8,

9u6)= 3 at cexn(0, —a), (2.1.10)

with e¥ by (1.1.13).

Although H(+1) tends infinity in these solutions, but we may not imagine such dis-
tribution in practice.

Thence, let us put the condition

H(+1)=0 or ¢0)=¢(x)=0, (2.1.11)
Combining H, and H, as
H(y)=aH,(y¥)—bH\(y),

1 2.1.12)
| mada=2,
thiz condition is satisfled when
b=a—1, a=¢0)/[¢s(0)—¢a(0)]. (2.1.13)
Then, the wave resistance will be

r¥*=20%1a=2g%/(rd). {2.1.14)

Lastly, if we expand ¢,{(#) of (2.1.9) in Fourier series of
¢s6)= 33 P cos 208, @.1.15)

the coeflicients are determined by the next equations
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Solutions of Minimum problems of the wave-making resistance of the doublet distribution 37

fo=2/r and 336Binsn=Clin(@/v/Z) for m=0,1,2,.-  (2116)

Obviously, we may also calculate them by the Fourier expansions of Mathieu functions
using the coefficients b¥..
The numerical results are shown in Tables 1, 2, 3, Figs. 1 and 3.

2.2 Limit in high speed

Firstly, in the high speed, the minimum solution nearly equals to the quasi-wave-free
solution.
Namely, considering up to the second order terms, we have from (1.1.19)

Pa(8)5(2/x)[1—{g%/16) log (8/79) cos 261 , (2.2.1)
and from (2.1.15)
()= (2/x)[14(39%/16) log (8/rg) cos 207 . (2.2.2)
Hence, using these values, we obtain by the definition (2.1.12) and (2.1.13),
(N =(4/x)sin? §, He(@)={4/x)sind, (2.2.3)
and the wave resistance is to be
r¥=+(2¢°/z)log (8/r9) (2.2.4)
r¥=8¢/x . (2.2.5)

The last value corresponds to the induced drag of 2z wing as H. Maruo elucidated®.
Namely, introducing the lift P, the lift coefficient Cy, the aspect ratio 4 and the drag
lift ratio £ as

P=pgp ,
¢e=R/P,
gince we can write
r*=R/(pgr*/ B*)=2e/(CLV*/gB), 2.2.7)
the value of (2.2.5) is the same one as
£+=2C: /=2, (2.2.8)

where B means the breadth and L the chord length.
Then, in the other hand, the value of (2.2.4) will be much smaller than this value, that
is,

—113—



38 M. BEessHO

e=go(g?BY/ 16V log (16V%/rgB). (2.2.9)
Regardless to say here, it is out of question if we can imagine a planing surface as
represented _by (2.2.1).

It is also ini;eresting to compare with the two dimensional wave resistance of a pressure
distribution P per unit breadth, with infinite aspect rario, given as

ge=R/P=gP/(pV*)=(gL/2V*C., (2.2.10)

CLzP/(%V2L> :

As we see easily, the value of (2.2.9) is also smaller the last one when the velocity is
high.

With respect to the comparison with the longitudinal distribution, H. Maruo gave many
examples and explaned that the waveresistance of the transverse distribution might be
smaller than the longitudinal ones in the high speed®.

Henee, we have no more explanation than his,

where

2.3 Considerations on the velocity field

If we can add to his work, it is to the point if the distribution as (2.2.1) ean really
represent a ship shape. ’

Now, consider the velocity is very great, then the velocity potential degenerates to the
one of the lifting line, namely,

_ 1 / 2 _ z ,
¢, 9, 2)= 5~ j_lﬂ{y ) 2 5 (y_y,)2[1 T T :Idy . 2.3.1)

At the y—=z plane for =0, this potential goes to the same form as (1.3.1), so that
figures of those stream line, Fig. 2, may give contours of the same upwards velocity in
this case.

The stream lines and the equi-potential lines are given in Fig. 4 (a) and (b) for the
characteristic two loadings as

Hyp=1/vV1-y*, (2.3.2)
Hyy=~1-9*, (2.3.3)
The difference between both cases is quite clear and in faet the induced up-wards
velocity for the case of H, vanishes at 2=0, so that we might have no induced drag.
However, since we have very strong induced velocity just outside of the end points, we
might have a concentrated drag at these points.
In any way, it would be out of question unless we could establish its physical reality.
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3 Warve-free distribution

Lastly, we consider the wave-free distribution over the area on the y—=z plane.
In the sense of (1.1.2), let us define

Fik, q)=“sh(’y, z) exp. (kz—igy)dS, 3.1

where § means the area over which the doublet with the axis in the z-direction h(y, #)

distributes and ¢g=vkE—g).
If we introduce the function m(y, z) by the equation

o2 o2 7]
hy, )= (@;'I" W"l"g ——6‘7) my, 2), (3.2

this funection may be determined uniquely except an arbitrary boundary values.
Hence, putting the condition, say,
m(y, 2)=0 on C, the boundary curve of S, (3.3)

and integrating (3.1) partially, we have

F(k, 9= oxp. (ke—iqu)g-m(y, 2, .9
where » means the outwards normal to the cuve C.
Hence, if
%m(y, 2=0on C, (3.5)
we have Fk, ¢)=0, (3.6)

and the wave resistance vanishes,
Many wave-free distributions belong to this species. For example, let S be the strip
of the breadth 2 and extending from the water surface to the infinite depth, and m{y, 2)
be able to write
m(y, 2)=Y()Z(z) . 8.7
In this case, the boundary conditions on the lower edge at infinity need not be satisfied
and all functions satisfying the conditions

V()=Y"{x1)=Z{0)=Z2'(0)=0, (3.8)

will become the wave-free distributions.
Nextly, the formula (3.4) tells us directly the wave resistance of m(y, z) equals to the

one of the line distribution %m(y, 2) on the curve C.
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That is to say, if we put the negative distribution of the last quantity on the same
curve, the wave resistance will be clearly cancelled out.
Lastly, assuming the partition (3.7) over the same area, (3.1) can be written

Flk, =Y*(@)Z%(k), 3.9)
with Y@=|_ Y@ exp. (—iandy, ¢=vEE=3, (3.10)
z*uo:j"_ Z@) exp. (k2)dz, k>g. @.11)

Are there the function for which the integral (3.10) or (8.11) vanishes respectively ?

The answer is none for the appropriate class of the functions Y(y) and Z(z) by the
theory of the Fourier and Laplace transformation.

All these present considerations are confined in themselves to the doublet distribution
with its axis to the x-direction, but if we introduce more complicated singularities, we may
obtain more interesting examples.

Conclusion

We have solved the minimum problem of the wave-making resistance of the line and
area distribution perpendicular to the uniform flow and obtained the conclusions as follows;

For the area distribution over the strip extending to the infinite depth,

1. The optimum distribution is determined uniquely and it has infinite strength at both
ends.

2. As shown in figures, its stream line at great depth does not close when its strength
is not sufficiently strong.

3. The minimum wave resistance is very much higher than the one of the longitudinal
distribution and its coeflicient becomes greater by decreasing velocity.

For the line distribution on the water surface,

1. There is a quasi-wave free distribution but it tends also infinity at both ends.

2. Buch distribution may not be realized physically.

3. The minimum problem has a solution except such one and also has infinite strength
at ends,

4. Combining both distributions as the way in which both end strength vanish, we can
obtain the same conclusion as H. Maruo did, namely, it tends to the elliptic distribution in
very high speed.

In the last paragraph, we give a few types of the wave free distribution.

It may be remarked that the freedom of such distribution is narrower than the one in
the case of the longitudinal distribution.
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