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Abstract

The author introduces the funetions which play important roles in the theory
of the wave-making resistance of ships, converts their double integral to a
simple one, obtains various integral representations and analyzes their properties
especially in the relations of the well-known simple funections.

Then finally, he gives the list of the available tables of his or similar functions.

1. Introduction; Definition and Differentiation

It is difficult but necessary to compute the fundamental function in the theory of
the wave-making resistance of ships for the development of this theory.

The author has tried to analyze this function and finds its double integral to be
convertible to a simple one, making use of the velocity potential of T.H. Havelock!®,
but the preceding works®»3% were limited to the case of two variables z and ¢ (see the
definition below).

The functions are defined as follows®:

0.z, 3, )= lim (—i) g” S‘“exp. [—kt+ik(x cos w-+y sin u)] cos™t udkdu,  (L1)

u—sto 47 Jorlo kcosg®u—1+picosu
0us, 3 = Jim COE[" [remp Lot e it Vol oprisuaban, - (12)
Pu(z, 4, t)=—;-[0n<”(m, ¥, )—0.2(z, 3, ], (L.3)
Qnl, ¥, t)=—;—[0ntl,(ﬂ7, Y, +0 %z, ¥, 1], (1.4)

where z, ¥ and ¢ are assumed real positive and » integer greater than —2.

All functions are real and they have usually oscillatory parts but O.® is monotonic
for the positive 2.

From the definition (1.3), we can easily find that
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100 M. BESSHO
=/ .
Panlz, 4, t}=(—1)"§ e~t=c™ gin (2 sec u) cos (¥ sec? u $in u) cos®™ udu
¢ ) (1.5)
/2
Peaa(z, 4, t):(—l)"’flg e-tsee’s oog (2 sec u)cos (¥ sect sinu) cos?™ udu
1}
These are the dircect generalizations of Havelock’s P, function'®!'®,
For the negative x, we can easily find also that

Oat(—g, ¥, 1)=(—)"0a®(2, ¥, 1) ,
Pu—z, y, )=(—1)"'Pulx, ¥, 1), (1.6)
Qu(—2z, ¥, t)=(—1)"Qu(z, ¥, t) .
and then
0.0(—z, y, )=(—1"[0.V(x, y, £)—2P.(x, ¥, t)] . 1.7

Accordingly, we don’t consider the funetion 0.® in the following, because it is the same
one as 0. when the sign of % is reversed.
For the negative ¥, we have also

O‘"m(mx —Y, t):O“u)(mr Y, t) +
Pﬂ(w! _yrit)ZPﬂ(x! ¥, t) r (1-8)
Qa(2, —y, 1)=0u(x, 7, 1) .

Now, the velocity potential of the unit source in the uniform flow of the unit
velocity flowing from the positive « direction down to the negative at the point (%", ¥', #")
under the water surface where the z-axis is taken positive vertieally upwards, is written
by T. H. Havelock'® as follows.

o e v 1 1
Sy, 2505 0 2 )"1/(:5—m’)”+(y—y’)‘+(z—-z’)z Vie—z' VP —(y—y P4tz )
+_gﬁg” E"" exp. [k(z+2 )+ ik{x—2) cos.ﬂ—l—'ik(y—y') gin 6] dkdd ,
4 0 keos® §—g-+picos §

-

where g means the gravity constant in this unit system.
This is written by making use of the definition (1.1) as

o 1 _ 1
R RV Cr = B e SRV e ¥ ey P
+4g0%gla—a"), gly—y"), —glz+27)], 1.9

Hence, the most fundamental functions are 0%} and its derivatives.

In this respect, the definition (1.1) is not very convenient but we follow it merely
because the author has used it to the present.
Differentiating the definition formula partially, we have
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On the Fundamental Function in the Theory of the Wave-Making Resistance of Ships 101

a O(l) O(l) a
- " +qu1, Z—Pa=Pa,
ox Qn Qur Oz
(1.10)
8 (0] _[02s 8
a_' }: +Qu_z ’ 5—P5=Pu—2,
t{Qn Qns ¢
where
qanl, ¥, t)= K——LS S €7* cos (Jexr cos u) cos (ky sin u) cos® 2 y dhkdu ,
ot (1.11)
Toni (2, ¥, t)—g—") S S e * gin (kx cos w) cos (ky sin u) cos?™ 3 y dkdu, ,
—x J0
and we learn from this definition that
iq a-q 1 |
’l at n 3
oz ’ 5 R (112)
qn+ta—tqn + a0 + y@qn=0 ,
and especially by integration
@y =5 5 pr=ttyt, =gty
gz, 9, )= —21—1_
L (1.13)
(=, 9, )= 1
T ¥y 2rir+t) ’
__ptrt
9o, ¥, t)_Zr(r el

Here we are to notice that the restriction for the order » may be rejected by the
introduction of the relations (1.10) and (1.12).
Lastly, we can verify the next differential relations.

" 2 On()
(51—,+ gy,+ gv)’ . }=0, (1.14)
0u

(e =g

ot _ 8
(=7 )P,._o :

(1.15)

And then, combining two equations, we have
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.n—_"

Let us consider deforming the integral (1.1) in the simplest case n=—1.
Considering the integration with respect to u in (1.1), we can write also it as

.
O%%%0=i§

2
cos % du
4dr

x/2

i1k cos u —ikz cos®
€ e

S”e—kt+\'ky sin n[ — ]
0 kecostu—ltpiecosu keoslu—l-tpicosu

If we change the variable k to m as m=Zkcosu and then u to v as secu=coshv,

this becomes

1 oo oe
OE} %, Y, t :__.‘ d,ug -—mpcosk(w%m[ = -
S ) Jo ¢ m+pi—coshv m—pi—coshv

gimz e—-"mz

]dm .

” where p=1/t*+y* and a=tan"'(y/t).
Now let us consider the integration

— B 5 . .

L with respect to » in the complex v-plane
T - (see Fig. 1) and deform the path of in-
e tegration A to the line B for the above
;2 0 A first term and to B’ for the second term.
(n o°) d Then, this integral on B and B’ goes to

5 -
B ' 1 oo oo eim(p sinh u—gx)
> e —dm ,
A > dmi S -mdug_mmﬂ sin h(u+ic)— i
and then integrate this with respect to m
Fig. 1. wv-plane

in the complex m-plane.

This is a well known integral and vanishes except 0<u <8, and equals

1 (8
2

_——S e—(z—p sinh u} sinh (u+|’¢)du, where ﬁ:sinh-l(x/.o) .
0

Other parts of the integral are residues at the poles lying between the line A and

B and between A and B'.
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On the Fundamental Funetion in the Theory of the Wave-Making Resistance of Ships 103
Caleulating these residues and changing the variable slightly, we have finally
0%z, ¥, t)_—.—l-s exp. [{o sinh (u—ta)--2} sinh u] du , (2.1)
2 )i+,

where L, and L; are the paths of integration shown as in Fig.Y2,

.

{o, %1) / (w' %i)
2

(B,ix)

o =tan" (y/t) >
§=sinh-1 (X/m)

L

(wv"' %i)

o B

Fig. 2. u-plane

In the same way, we have generally

0z, v, t)=(;]§)—”:ii exp. [{o sinh (4—ia)—x} sinh u) sinh "u du, for n=1, (2.9)
2

L+

The equivalent formula for the case n=2 and y=0 was obtained by R. Guilloton®
who introduced it from Mitehell’s integral, so that we may see the identity of his one
with Havelock’st?,

For the case n<0, the integrand diverges near the origin, so that an artificial
technique must be used.

Let us consider the case n=0 for example; we can write its integral as:

1(~ dv o . gime
Ou(z, y, t) 4“;5_“ cosh o S o & cosh {my sinh v)[m-!—#i—cosh v

e ]dm )
m—pi—cosh v
but

lr _SI_Ilbjde “e""" o ¥ oos (my sinh v)[the same as the aboveldm=0,
4z)_wcosh v )

a3 easily from the symmetrie character. ‘
Hence, adding the latter integral to the former and integrating in the same way as
the above, we have:
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0n(x, ¥, t)=——1-S exp. [p sinh (u—ia)—z sinh «] 2 =S8B Wy, @2.3)
2 Jryr1, sinh u
and moreover
O (z, ¥, t)=%§ exp. [the same as the above](——cmd (2.4)
Iyt Zg

0z, y, t)=—%L __ exp.[the same s the above](1=0sh ut dcosh usinly Wi . (2.5)
1 3

Al these formulas contain imaginary parts but only their real parts are to be
taken.

Now, since we have already the integral representation of Pa. as (1.5), subtracting it
from the above formula, we have @. by the definition (1.3) and (1.4) as follows:

Q_za, Y, £)=(— 1)"—15 et sin” wgogh {7 sin u cos ) cos (& sin u) sin®™'u du

Bt
+—2—S * ’exp [g sinh (u —ie)—2x sinh «] sinh®~* % du, for nz=1
1]

9 (2.6)
=/t ;
Q_zn1(, ¥, t)=(——1)“§ et sia” « oogh (¢ sin % cos ) 8in (z sin «) sin®** u du
']

B+
; S exp.[the same as the above]sinh®* u du, for n=0,
a9

and

Qolz, 4, )= ~S g=tein’ ¥ gogh (¢ sin % cos u) cos (x sin u) (ﬁyﬁdu
1}
1 [#+

-i-—S Mexp. [{o sinh (% —ia)—x} sinh u] Q—.—mh—u)du
2 ) sinh u

+S e—t«® ¥ ooq (1 cosh %) cos (y cosh % sinh ») tanh w du, - - - )]
0

The last one is equivalent to the next formula which is obtained by the integration
of (2.6) making use of the relation (1.10).

iz, ¥, £)=0Q(0, ¥, )-——log(rii)

®/% . . du
+S et stn' v cosh (y sin u cos w)[1—coa (x sin w)] . —
o

in %
1 [f-ie : A e du
2 So [1—exp. [{p sinh (u—ia)—z} sinh #]] cnhw’ (2.8)

3. Integral Representation II.

The preceding analysis enables us to compute their values numerically, but it is felt
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On the Fundamental Function in the Theory of the Wave-Making Resistance of Ships 105

that their integrands converge very slowly in the range for small ¢ and ¥, especially in
the formula (1.5) for the P. funetion.

For such a range, the following analysis will be convenient for numerical works.

For convenience’ sake, let us consider the function P_, and other functions will be
deduced by the differentiation and integration.

At first, we have from (1.5) after the substitution of the variable in its integral,

Pz, v, t)=—§1.;‘-exp. (-—%t 4 —;—p)r exp.[iz cosh u—p cosh"( u— ii;—)du . 3.1

where its real part is to be taken.
Since we have the integral

—pcosh? (y_i& =_1._ bt . ( _.g)]
e—Peosh” (u—i7) 21/|55§_mexl)'[ 10 iv cosh { u iy dv ,

we can rewrite it as

-5+ e -
e’ S exp(—:—;)d'vg exp. [fim cosh u—1iv cosh ( u—-'i%)]du .

4V'rp

If we introduce here the new variables
as shown in Fig, 3, that is,

a . . &
Reosdp=x—v» cos—, R sin ¢=vsin o

or Ri=g?+4*—2xvcos -g- .

then we may write

2 coshu—v cosh( u—ii;-) =R cosh (u-+-i¢),

Thence, shifting the path of w-integration in parallel by ¢ and carrying out the
integration which gives the Bessel function of the second species, we have finally

Pz, v, t)=—§’% eJ'%*;’fS’”exp. (- 41;) Yo(R)do, 3.2)

Thie is suitable for numerical computations when p is small.
When y vanishes, this becomes

 VEL" o (o _
P.i@,0, ty=—] l/t_s_'exp.( ) Yol z—l)de (3.3)

which was given by E. T. Goodwin'®?, and we see that the right hand side satisfies the
differential equation (1.15), that is, of the heat conduction.
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106 M. BEssHO

Moreover, taking care of this point, we have generally

Pu(z, v, t)=ﬁ§:ﬂexp. (—v*/4t)Pu(z—v, ¥, 0o, 3.4)

From the stand point that these function can be represented in the form of the
solution of the partial differential eqation, we can apply this method to the equations
(1.14) and (1.16).

In the former case, Laplace’s equation, there are many formulas but we will not
consider them here.

In the latter case, we can change it to the next equation

@ O AN P, y, tei]=0 35
(3y2+3zx+4)[ (@, ¥, Hei]=0 , (3.5)

This iz analogous to the equation of the diffraction of the wave, but itz wave number
is imaginary, so that it will be treated in the same way".

4. Expansion of P. Function

Let us consider the function P-. once more in the form (38.1), which equals also

- 1
P_i(x, ¥, t):%e—% S gTzrcosh 2u—im ang (3 cogh u)du , 4.1

Foo

Remembering the expansion 22
cos {x cosh u)= > (—=1)EpJeal{z) cosh ‘2nu) ,
n=_0

where &, means 1 for n=0, 2 for n=1, and the definition

(L) b an
" 2 0 ]

we can integrate (4.1) term by term as follows,
Pz, ¥, t)=—“12~e*‘/2 s (—1)nenKﬂ(—21—p)J.,.(w) ¢08 ner, (4.2)
n=0

This series is convergent but its convergence is very slow for large value of the
argument (x%/4p), and so for such range the next asymptotic expansion may be suitable.

Namely, we proceed as the above expanding exp. [—%p cosh (Zu,—iw)] in the Bessel

function with the imaginary argument, and can obtain the expansion,

Pz, gy, 0= —--;—e“fz i EnIn(-;—p) Yeu(x) cos na . 4.3)
w=0
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On the Fundamental Function in the Theory of the Wave-Making Resistance of Ships 107

In general, we can not have such an elegant expression as this, but we can expand
it in the Taylor series by the definition (1.10) as follows,

Pﬂ(x) ¥ t): i xu; P’l—'ﬂ(oy Y, t) E (4-4)
m=0 M !

P"‘(x! Y, f,): i tm.l P"‘Aam(x! Y, 0) y (4-5)
m—o0 N !

The former is convergent but the latter is divergent and an asymptotic expansion,
and the functions in the right hand sides are expressible by known functions in the
next three cases,

i) Palx, 0, 0) is the same one as defined by T. H. Havelock!?, that is,

Pu(z, 0, 0)=_i;-r .

o=

S“ Ya(w)dz+ | for n>0,
° . (4.6)
T d n—1
P_alz, 0, 0)=——(-) Yol@), for mz=1,7
2 \dx
iiy Pa{0, y, %) is zero for even # because it is odd in z by its definition, namely,
P:i(0, ¢, £)=0, 4.7

When # is odd, the simplest case is given by (4.2) putting in it # to zero, that is,
I SR
P_1(0, U, t)—~—2—3 2 Ko ) 2, . (4.8)

and moreover by the definition

Posni(0, 9, t>=§(%)" [e-wz K(%p)] , for n=20, (4.9)

oo

Pinil0, ¥, t):%ge St e“f’zKo(%p)dt“_', for n=0, (4.10)

iii} When ¥ vanishes too, the above relations become simpler and we ean obtain the
next recurrence formula by partial integration of the definition formula.

(n +§—)Psn+1(o. 0, €)=(t—1)Pon_i(0, 0, £+t Pe_s(0, 0, £) , (@.11)
In another way, we have from (4.8) and (4.9), especially,
_1 s (; )
P_{0,0, )= 2e Ko 2# y -

P_y(0, 0, B)= _j}*e“f”[Ku(%t )+ Kl(%t )] .

(4.12)
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108 M. BEssHO

Then we can get all functions by arithmetic.
Finally, it is easy to see that

(1l DL (n+1)
Pani0, 0, O=(—11=p 75 =, (4.13)

5. Oa'(x,0,0) and Os"(0, y, t)

The functions O.%{x, ¥, t) or Qu(x, ¥, 1) can not have such simple series expansions
ag in the preceding case, because they have a part expressed by indefinite integral as we
gee in § 2.

Then let us consider here their degenerate cases only.

Firatly, getting to zero ¥ and £ in (2,1), we have

09z, 0, o>=~;~§:e—= s sgy =" How)— Yo(@)] (5.1)

where H, means Struve’s function®
By the integration and differentiation, we have directly

" I - _ 2

Ovit(z, 0, 0)= 4L[Hu(x) Yeo(z) m]dm, (6.2)
a 1.1 =

04z, 0, 0)"_2x+_2 — Y [Hi(z)— Yi(2)] , (5.8)

and the recurrence formula
no”m(m! 0! 0)+(n—1)0,(}3.3(x1 0: 0)
=z[0% (x, 0, 0)+0 (2, 0, 0)+gar(z, 0, 0)+gn_s(z, 0, 0], (5.4)
where ¢. is easily found to be

(—1yp T (n+4)
22y = I'n+1)’

qzn(ﬂ’, 0, 0)20, an_;(m‘, O, O):
(6.5)

g-s(z, 0, 0)=—$ and g-»(z, 0, 0)=co for n=3.

These funetions correspond to Havelock’s @« function which are defined as'®®

hY

Qo(x)=32-r [Hi(z)— Yo(@)ldz ,
' (5.8)

Qo(ﬂ?)=5: Qui(x)dx .

After fairly long ‘caleculation in the formulas (2.3) to (2.5), we can obtain the
following relations.
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Qu(z)=log (Zrz)+20,“(z, 0, 0) ,
Qi(x)=2xlog 2rz)+1—2z+20,%z, 0, 0) ,

Qi) =(£’_;1) log (2r:c)+%+ . —%:;! 4209z, 0, 0)

(6.7

Here ry means Euler’s constant 1.78108... .

One of the conveniences of using our 0. function is that each of it has a simple
asymptotic nature and tends to zero when x tends to infinity.

Secondly, when x vanishes, we have by its symmetrical nature

02(1;3(0, Y, t):QSH(O’ Y, t) ) }

6.8)
O&JH(Or Y, £)=Pans:(0, x, t}).

Since the latter case is already discussed, we will consider the former only.
By the integral (2.2), we may write it as

Q-5(0, ¥, t)= 0“X0, ¥, t)=wle“" 2S exp. [lp cosh (Zu—ia)] sinh % du ,
2 Ly+ Ly 2 .

Here L. and L: are the paths shown in T
Fig. 2 but here f=0.

Now, let us deform the paths L, and LE L—)
Ls as shown in Fig, 4.

Then, the integrations along the lines
parallel to the real axis cancel out each
other and after some caleulations we have

-
Ly
-
&
S’

€ o) el =
o .
v

Q-—-f-(ot Y, t)
= i. —UEER_“ —1pcosae;
cos(za)e os 3 cos v dv L| I
a2
=—(‘M"—QE0(-F’—ﬂ) , (5‘9)
20 2 f
Here Fig. 4. u-plane
et V% . 3) < (=2 22)28
= Cdy=I|— — . B 10y
E@=1r7 §., e du (2 2 Tnt3/2) 6.10)
In the same way but after long calculations, we have also
+t
Q(0, 9, t)=——-log [27(p-+1) +§"":Eo(z)dz : (6.11)
0

Finally, if ¥ vanishes too, we have directly from the above

—129—



110 M. BESSHO

_ 1 !
@0, 0, ty=——log (4rt)~+-gqu(z)dz . } 612
Q—z(oi 0: t):EU(t) ]

and by partial integration of the definition formula

7Q2x(0, 0, t)+(n—%)QM(o, 0, t)
=t[Q20-2(0, 0, )+Q2xs(0, 0, 1) -+g2n_2(0, 0, £)+q22-4(0, 0, i, (6.13)

where

g-(0, 0, )=0 for n=8, ¢_s(0, 0, t)z—zlt,
(5.14)

26(0, 0, t)z;lt— , ete.

6. Neighbourhood of the Origin
Our functions have three arguments so that we may lose their general character

even near the origin.
Then, let us consider the character near the origin for a moment.

Firstly, considering the funection G.", the simplest case n=—2, we have from (5.3)
and (5.9

0%(=,0,0) —— %-F%log (ra/2)+---, (6.1)
090, , £) —— cos* %[ 1~(L3ﬂl+ ] , 6.2

Namely, it may be finite near the origin because it does along three axises as we
see and this is confirmed in faet by R. Guilloton’s table® (See §9 also).

If so, it is smaller and negligible compared with ¢-:=—1/2r near the origin so that
we may conclude from (4.8) and the definition that

0%, y, t)= 090, v, t>+§' [0-x(, ¥, )+ q_s(®, ¥, Dldz
L 1. rte r(r+xz)
- log (4/re) 1og( ! ) ig[ . ] 6.3)

and then, differentiating it,

Ar

)
Oz, gy, H=—0z, ¥, )—q_s{2, 9, s ————————= ——— | A
N, v, B) % 0%z, ¥, t)—q-s(2, ¥, 1) Srrra) 2o 20 (6.4)

Secondly, let us consider P_; of (4.2) near the origin.
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Since we have?®

K"(%P)‘—Tlog 4/re) , K(%P):@(%) and Jz"(”):z‘(?z/i))z!”’

its series equals nearly
<1 3 (pp=D! ﬁ.)"
P iz, y, )= 2 log (4/rp)+§1( 1) @t \s €oS na
1 ﬁgi“
=L 1og (4/7'(3)—549 Eu(2)dz . (6.5)
Q

Here its real part is to be taken.

In this formula, if (x*/4p) is small, the integral in the right hand side is also small,
but this is not the general case.

Namely, when x and p are small but (2%/4p) is very large, this integral increases
logarithmically as

S’ Eolz)dei= % log (472) ,
[}

go that we may obtain

Pz, y, 1) = log (2/7x) . (6.6)
?z‘mpSI

This is coinecident with the predominant term of (4.8) which may be valid for such
range.

Lastly, we can obtain in the same way as the above
2
Pz, 4, 0= log (roit) — LeE( £ ) : ©.7)
4 e 49

where the real part only iz to be taken.

7. Asymptotic Property of 0,%

Although the function 0.% iz complicated in nature as we have seen, but it ig
fairly smaller compared with the P, function, and that it deereases monotonically and
has an asymptotic expansion when its arguments tend towards infinity.

Now, let us consider that r=1/#*+y*+1* is very much larger than the unity.
Returning to the integral (1.1) and expanding its dominator of the integrand as
ﬁ}ﬂﬁ:—(l—i-kcos“u—i-k’ costu+, ---},

Let us integrate term by term and use the definition (1.11): then we have
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112 M. BESSHO

0.z, 4, t)'=.—[qu(w, Y, t)+—qn+z(a=, ¥ )+ at=q"“(”’ ¥, b+ ] ; (7.1

For example, making use of (1.13) we see that

ri+pt

Ou(z, y, t)':.—m* ey p=1 R (7.2)
a .z z[8p*(r+4)+2x%]
O%ie: 9, B 2r(r+t) ety (73
_— 2
0%z, ¥, t)= -+ L ;’;m e )

which are coincident with the asymptotic characters in the degenerate cases of §5.
The first term of the right hand side of (7.4) is a well-known mirror image term
and was given by R. Guilloton from the observation of his table” (see §9 also).

8. Asymptotic Property of P,

In contrast to O, funetion, P» function takes a comparatively larger value even at
the point far from the origin, and it shows a well-known Kelvin’s wave pattern which
has been studied by many authors!¥®",

Here we consider the asymptotic expansion of our simplest function P_: following
their methods.

Let us rewrite (3.1) as follows,

Pz, v, t):ﬂ“ T 8.1)
that is,

Jluw)=cosh u~§% sinh 2u+;—t cosh® u , (8.2)

and apply the saddle point method?®,
To obtain the saddle point from (8.2), the equation

£'(w)=sinh u—% cosh zw-‘ii sinh 2u—0, (8.3)

must be solved, but it is easily found that this goes to the equation of the fourth
degree and its solution is very complicated.
Hence, keeping out of confusion we will take up much simpler cases.

A) The case y=0
The equations (8.2) and (8.3) become
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Flu)=cosh u—l—i—t cosh®u ,
Fw)=sinh u+2$i sinh 25=0 ,

so that the saddle point to be used is the origin.
Now, putting

P=F)—FO)=5 1 'O+ FOQ)+ -,
where f“(0)=1+%:i, f=*>(0)=1+§;1,
we may write (8.1) as

P_i(z, 0, t)=e=ro remﬁ (.‘.iﬁ_)dp _
0 dp

Then, if we expand as

=y Ry B o

namely, § VIR, dp,

2n+1

the integration of (8.8) can be carried out term by term and we have

exp. (—t-Hix+imd) I'n+3)
Pl O = T aw E, ity

(4)
where =1, Qi=—= ©

21O

as we get from (8.6) and (8.9).

B) The case t=0
The equation {(8.2) and (8.3) go to

Flw)y=cosh u—- sinh 2u ,
2x
'V —ai Y
F(w)=sinh u 2z cosh 2u ,

Then, the saddle points are two, that is,

+e
asinh[“’1 =& E=cogh™!

w] V2’ 1/?8"11)’

(8.4)

(8.5)

(8.8

8.7

(8.8)

8.9)

(8.10)

(8.11)

(8.12)

(8.13)

(8.14)

so that there may be three cases if z is smaller, larger than or nearly equal to 1/ 8y.
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A i) If z is smaller than 1/ 8y € in(8.14)
is purely imaginary and the saddle points
are as shown in Fig. ba and the point u:

x) may be used after some consideration,
Putting £=1& and

1 —:ﬁ—ﬂﬂ
coshuz—V§1/2_,_e 28—1/_2_,

namely, p=1"5+4cos2¢",

| A D

] tan 26= 2—?&% ,
(8.15)
Fig. 5a. wu-plane we may write f{u) and its derivatives at
this point as follows,
f(uz)=:%(3+i tan &),
f“(ug):% tan&'e s, F(un)=— j?e—iff', (8.16)
o= (1 Te ).

Now, let us take the path of integration as shown in Fig. 5a and integrate as

Pz, y, 0)=-L-gierw S“ - (d—"’)dp, 8.47)
2 o dp
where ipt= flw)— flu)= Lo (s + S )+ -
Y K'Y a } (8.18)
V=U—Uz
Expanding as
(fi.@)= 9 S m Vv F w2t [ _dv
\ap) Y P SO T e (8.19)

that is especially

IR PAOD A CD
1207 ) 4

ar=1 , Oz

we have finally

P_z, ¥, 0)';%ef=fwz>+wz e ] (8.20)

T
ypsin€'| 2z
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ii) When #>1" 8y, ¢is real and the *
saddle points lie on the real axis as
shown in Fig. 5b.

This is a well known case in which
there are the diverging and transverse
wave-systems inner the Kelvin angle?®.

In this case, f(u) and its derivatives
are all real and they are

o
[

%}
]
_F

/ N

Fig, 5b. wu-plane
32
f j):;‘;shhzg’ (1+ 1 e“’) e¢=5/(2ecosh &),

N 1
S (u)=F4 1+ e** tanh &, (8.21)

I (u )= _1/—2 et®, f“’(uj)zJ_IT—%e s pFe_Tede))(2 cogh &),

. ]
P T

where 7=1 or 2 and the double sign is taken as the upper one for j=1 and the lower
for j=2.

In a usual way, let us integrate along the paths shown in Fig. 5b, namely,

Pz, y, 0)=3 _];.eimf(uj)S” - @vdp ,
j=1,2 2 —ca dp
Where = f)—flu) = 2 @ T ) + (8.22)
v=u—u; ,
expanding as
C
ﬂieizﬂ/?m E aﬂpn ,
dp w=0 (8 23)
as=1, a:— LA CT) Y A ¢ 7)) '

1R ()l Al (ua)l

then we have

Pz, y, 0= .E gizf i +in/e '\/2?%(7)(1+g_;+ e ) . (8.24)
§=1,2 t

iii) When = is nearly equal to 1/ 8y, the preceding two formulas give wrong
approximation,

In this case, the most reasonable formula owes to F. Ursell?® and we will follow
his analysis.
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Let us consider & as real and put (8.12) hs

Fuy=—L+ouE)+(8)
namely , (8.25)

/3

p(e)=[%{f<uo—f(uz)}] | WE)=—3 1w flup)]

A then the saddle points in v-plane are
™
= . 3.26
’Uz} HE) ( )
o uy Now, if we may expand as

y n\'Q\_’ —gif': ”i::“ a"('vz_ﬂ)"l"v n%ﬂ b“(’uz_.u)" !
8.27)

and take the path of integration as shown
in Fig. be, we can integrate as follows,

({#l:ﬂ-—'—)(——hlﬂ ——ﬂ

Fig. be. w-plane

Pz, v, O):_;_S‘“ exp. [im(—”—3+ vpe +y)]ﬂd,ﬂ

3 dv
_ metzvie f,:bu

=P ) 1 A ] (8.28)

where
Aiz)= chos (BLF zZp )dp .
T Jo 3

that is the Airy’s integral®,
The coefficients @ and b are found to be

= e rer /v T ®.29)%

Finally, it is easily seen that the formula (8.28) is applicable for the imaginary &,
that is, ounter region of Kelvin angle in which case p# of (8.25) is negative and the
argument of Airy’s integral changes to positive®.

9. On the Numerical Tables

There are many tables of such functions prepared for the objeet to compute the
wave-making resistance or the wave profile and pattern.
The followings are their list available for us in our notation.

—136—



I o

b)

c)
d)

e)

g

I a)

b)
€)

d)

e)
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Pa(z, 0, 0) for n=01)9 and »=0(0.4)4.4,5(1)40
where the number in the parenthese means the interval of the parameter.
with 4 significant figures by T. Jinnaka'®,

2 pyz, 0, 0) and 2{Pi(z, 0, 0)—1],
T T

for £=0(0.1)1.0(0.2)10.0(0.4)50.0 with 4 figs., by T. Inui'®.

Puz, 0, 0) for n=—T7(1)1, x=0(0.5)2(1)16 with 7 figs., by M. Bessho®.

Pu(0, 0, t) for n=—"T(2)5, t=0~10, with 6 figs, and U.({t)=(—1)"P.:»_«(0, 0, £) for
n=0K1)31, t=0~6 with 10 figs. by M. Bessho®.

zano(o:) and2—1~Q1(x), for #=0{0.1)1.0(0.2)10.0(0.4)50 with 4 figs. by T. Inui'®.
T

042, 0,0) for n=-2,-1,0, ==U05H2I6 and |* Oe, 0, 0)iz and

0
(%)n OE{ (x, 0, 0) for n=1(1)4, 2==0(0.5)2(1)16 with 7 figs. by M. Bessho.
Qux(0, 0, t) for 2n=—6(2)4 , ¢=0(0.1)1.0(0.2)10 with 6 figs.

Eslt) ,S”Eo(t)dt for £=0(0.1)L(L}10 with 10 figs. and En(t)=(—1)*@_sas(0, 0, &) for
[+]
1n=0{1)9, t=0~3.2 with 8 figs. by M. Bessho®.

P.a(z, 0,t) for =0~60, 1/t ==0~1.0 with 4 figs. by Nationa! Physical
Laboratory, Ma/16/15022%,

P_{z,0,%) and O% (x, 0, ) for £=0~19.5, t=0~1.0, with 4 figs. by T. Takahei®®,
02w, 0,t) and the wave elevation by a point doublet along its path, with 4
figs. by Tokyo University®.

P_y{z, 0,t) and O%x, 0, ¢) for £=0~27, t=0~5.2 with 8 figs. by T. Iwata®®.
These four tables are prepared for the computation of the wave-making resist-
ance and the wave profile.

Pz, 0, %) for n=—T7(1)2, x=0~16, t=0~6 and O.“(x, 0,t) for n=—3(1)—1,
£=0~16, t=0~6 are prepared for the computation of the submerged body
problem by M. Bessho®.

5 —_ 9_onldal gy —glatz)

nz(x' v, at2)= n.VzO—ﬂ Ve loye 1%L and
A - I [Q‘l-’tl gy :9(_‘1";@_]
na(xr yr a i‘Z) _W.‘VBP_Z V* r Vz r V‘ ’

setting g/1V*=04, for gx/V*=0~20, gy/V?=0~4 and —gla+2)/V*=0~0.8 with 3
figs. by R. Guilloton®?.
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b - Zi(g, 0)—Zulg, 0) = log (2ra)+0"(x, 1, 0), for g=1/FFT =0 ~20, 0= tan"(y/)
=(0~180° given glmost by figures by T. Jinnaka®>.

10. Conclusion

The preceding analysis shows that
1. the function considered is represented by single integral instead of double integral so

that the computation may become simpler.
2. the various limits of the function are considered and related to the known functions

as far as possible so that the general feature may be elucidated.

We have the similar work by R, Guilloton in which he showed heuristically and
numerically its property and the extraordinary way of computing the various quantities
of the velocity field around the ship with the aid of his tables, but, mathematically
speaking, his method has some difficulties which we hesitate to proceed with.

Our final outeome must be the same as his and this work might be the second step

in the attack on this problem.
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