1 Introduction

This report describes the numerical study on predicting the diffraction loads by a fixed
Lewis form body in regular waves. The computations are performed by using the
2D-Numerical Wave Tank, which is the fully-nonlinear time domain simulation program
originally developed by an author. The main purpose of this study isto confirm the validity of
anumerical wave tank for the diffraction problem.

The Numerica Wave Tank (NWT) group of the International Society of Offshore and
Polar Engineers was established at the 5" ISOPE conference in The Hague (1995). At the
Tthconference on Honolulu (1997), it was decided by the member of the group to begin series
of informa work shop meeting where computational benchmark cases will be defined and
their results discussed and commented in a special session during the forthcoming |1SOPE
conference. A free access data bank will be created and enriched with the numerical results of
the participants, so that the everybody can get data files and to perform his own analysis and
comparison with any other participant. The 1st and the 2nd NWT Workshop session were
held in ISOPE98 Montreal Conference and 1SOPEQ9 Brest Conference. The problems and
nemerical results discussed in the previous workshop are aready opened at the following
Web site:

ftp://ftp.ec-nantes.fr/NWT/1998/

http://www.srimot.go.jp/dyn/member/tanizawa/
The 3rd NWT Workshop session will be held in ISOPE2000 Segttle Conference, where the
topic is the diffraction force computation by numerical wave tanks and pressure computation
on the body is the key point.

The benchmark cases assigned in the 3rd NWT Workshop are computed in this report.
Numerical results are compared with the experimental results and theoretical results based on
linear theory. Only the time-series data of simulated wave exciting forces and wave elevations
in a tank, and the boundary values for one period in the periodically steady state, are
requested and these data have been aready submitted to the NWT Waorkshop.



2 Fully nonlinear numerical wave tank

2.1 Mathematical formulation

We consider the problem on diffraction of regular waves by a fixed Lewis Form body, as it
isillustrated in Fig.1. Fluid density r, gravitational acceleration g and water depth /2 are

used as units to nondimensionalize the problem only in this section. Assuming an inviscid,
imcompressible fluid and an irrotational flow, the fluid motion is specified by the velocity
potential f(x,y,t), which satisfies the Laplace equation within the fluid domain W (¢) with

the boundary G (¢).
N%=0 in W (2.1

The boundary G (7) consists of the piston wave maker surfaceG ,(¢) , the free surfaceG . (¢) ,
the Lewis form body surfaceG,, the right-end wall in the tankG,, and the horizontal
bottomG . As time changes, the boundary G ,. () changes both its shape and its position, and
the boundary G ,, () does only its position, while the other ones do neither.

The velocity potential T satisfies the kinematic and dynamic conditions on the free

surface. Neglecting the surface tension and choosing zero atmospheric pressure as a level, we
can write these conditions in the following Lagrangian form:

Dr -~

—=Nf on G.(), 2.2
Dr (2) (2.2)
Df 1, ._.

—=Z|Nf| - on G.(¢), 2.3
iy 2| |”- ¥ (2 (233)

where r is the position vector of the fluid particle on the free surface. On the other
boundaries, the boundary conditions are expressed by the impermeablity conditionsfor f as

follows:

up(r)  on G,(1),

(2.9
0 on G,,G,andG,,

where u,(¢) denotes the velocity of the piston wave maker and » is inward normal

direction of the boundary. Due to the motion of the wave maker, the free surface is changed

from the rest to the new position y =h (x,#) . So theinitial conditions are expressed by:
f(x,y,0)=h(x,00=0 on G,(0). (2.5)

Thus the velocity field in the fluid domain can be formulated as the initial value-boundary



value problem for the velocity potential . Then the free surface is a Dirichlet boundary
where f is prescribed, while the others are Neumann boundaries where §f/fn is
prescribed.
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Fig. 1 Schematic view of numerical wave tank

The pressure acting on the body can be obtained using the nonlinear Bernoulli equation:
1 .02
p:-ft-E|Nf| -y, (2.6)

While Nf can be computed from the solution of the velocity field, the acceleration field
must be solved for the exact computation of f,. As the more practical approach for the

computation of T,, the finite difference method can be applied. However, the problem such

as numerical ingtabilities ill remains in this case. Therefore, in this report, the boundary
value problem for f, aswell as T isformulated and the direct solution procedure for T,

is considered.

The time derivative of the velocity potential f, satisfies the Laplace equation in the fluid
domain as well asthe velocity potential T .

N%F, =0 in W() (2.7)
The boundary condition for ¥, on the Dirichlet boundary is expressed by
12
f,=-§|Nf| -y on G,, (2.8)

while, on the Nuemann boundary, the boundary conditions can be written by the following
forms:
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where a,(t) is the acceleration of the piston wave maker, T /1s denotes tangential
derivative on each boundary.

2.2 Numerical procedure
2.2.1 Solution by a higher order BEM

Applying the Green's second identity to the initial value boundary value problem, the
boundary integral equation is obtained, which have the same form with respect to both f

and T, asfollows:

f(O)ugG6(P,0) fO)u

T =-
«(PTP) QTf,(Q)iﬁ e () QU0 ,(Q)iﬁ

dG(Q)  (2.10)

where P isapoint(x,,y,) ontheboundary, Q anintegral point(x,,y,),and c(P) the
interior angle of the boundary at P. G(P,Q) isthe Green function for the two dimensional
Laplace equation. Considering the mirror image of G(P,Q) regarding the bottom boundary,
the horizontal bottom boundary G, can be excluded from the integration boundary G .
Then G(P,Q) iswritten asaform:

G(P, Q)——I ?i" : (2.11)
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A boundary element method (BEM) is used for the solution of the boundary integral equation
(2.10). The following features are introduced in this work:

Both the boundary geometry and the field function such as the velocity potential, its flux
and so on, are discretized with the quadratic isoparametric e ements for high accuracy.

For the non-singular element where the observation point does not belong to the
integrated element, a regular Gauss quadrature is used. On the other hand, for the singular
element, a Gauss quadrature formula for the integrands with a logarithmic singularity is

applied.

On the intersection between the Dirichlet boundary and the Neumann boundary, the
double nodes are placed. With the velocity potential continuous at this point, the velocity



of its intersection is deduced by taking into account the flux of the velocity potential on
both boundaries. This leads to the advantage to avoid the numerical tangential derivative
of T.

The interior angle ¢(P) is numerically computed by considering a particular Dirichlet
problem where the uniform velocity potential value isimposed on the whole boundary.

It should be noted that those coefficients of the matrices which derive from the discretization
of the equation (2.10) are in common for both cases between ¥ and f,. The solution

procedure of the boundary value problem must be applied sequentialy in time until the
computation reachs the desired time. As the free surface boundary changes due to time
evolution, the boundary condition also need to be updated corresponding with a new
boundary, which is mentioned at the next section.

2.2.2 Time marching scheme

The initial value problem concerning the free surface is aready formulated by (2.2)(2.3)
(2.5). So the instantaneous geometry and the velocity potential can be computed by
integrating the ordinary differential equations with respect to a time. The discretized forms of
these equations are represented as follows:

ILAY)

X, (t+Dt)=x,(t)+Dt¢t ,
Mx

T
hi(t+Dt)=hi(t)+DtL(t),
iy

(2.12)
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(i =1,2,%N,)

where r, =(x,,h;) is the fluid particles on the free surface, which is ith.node of total
N, nodes. The computation is performed according to following methods:

The 4™ order Runge-Kutta scheme is employed to integrate the ordinary differential
equations.

Auto time stepping argorithm is introduced to save a computational time.

Although a computation stars with an initially set time step size D¢, an current size is
changed to a smaller size in case of violating the condition: D¢ £Min{ Ds,}/Max{cy,}.
D s, denotes the element length defined by nodes(i,i +1), u, thevelocity of ;th node. The
parameter ¢, isaways set to 3.0 in present computations.



2.2.3 Artificial wave-absorbing zone and motion of wave maker

The artificial wave-absorbing zone is introduced at both ends of the tank as shown in Fig.1.
The right absorbing zone works for absorbing incoming waves and preventing the reflection
by the wall, while the left one works to pass the waves generated by the wave maker, but to
absorb only the waves reflected by a body on the free surface and propagating toward the
wave maker. Such an artificial wave-absorber can be made realized with additional numerical
damping terms to the free surface conditions (2.2) (2.3), which are expressed as follows:

E:ﬂ—y-n(x)(h-href) on GF(Z), (213)
Df _1,._.
D_t:E|Nf| - y-n@)(f-f,) on G.(), (2.14)

where n(x) isthe damping coefficient:
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In the definition of n(x), w and 1 are angular frequency and wave length of incident
wave respectively. The parameter a is the strength of damping and it is set as unit here. In
the equations(2.13)(2.14), the artificial wave absorbing zone damps down the differences
h-h, and f-f_ . The reference vaues are set to h,, =f,, =0 and for using in front of
the right-end wall, while these values about waves generated by the wave maker should be set
to for using in case of the wave maker. In the present work, the solutions of propagating
waves by linear theory are approximately used as both reference values.

_ 4Asinh?(kh) ] i
"0 =3y L ew
_ Adtanh(kh)sinh(kh) o y :
flxy.0)= w{2kh + Snh(2e)} cosh{k (y +h)} sinhx - wi) , Ib

where 4 is a motion amplitude of the piston wave maker and % is the wave number of
propagating waves generated by the wave maker.

In the present numerical wave tank, the motion /,(r) of the piston wave maker is
expressed as follows:

[,(t) = f(t) ASnw¢ , fi

2.17
£(6) =1- exp(- t2/25) , 3'; (217)



where the time-function f(#) makes it possible for the motion to start from the rest and
increase gradually. In case of this time-function, it takes about three periods to reach the

steady state.

2.2.4 Regridding and smoothing technique

The regridding every some time steps is carried out in simulating, which is one of
successful technique for a long time simulation and also important from a viewpoint of
simulating with high accuracy. For some nodes located near a wave maker moves rapidly
toward a downstream direction especially in case of generating waves with a large amplitude
motion, which leads to poor accuracy. In the present numerical wave tank, some grid systems
are supplied, such as a grid system to make each element length equal and one to control the
nodal density based on the geometrical curvature or the velocity of the node. The appropriate
grid system can be chosen from them according to problems. Furthermore, the smoothing
technique based on polynomials or B-spline also can be employed. Thisis effective to remove
the numerical instability such as saw-toothed instability and so high frequency componentsin
waves.



3 Numerical simulations

3.1 Description of case study

The numerical simulation is started from the calm condition at time ¢ =0, and continued
until the wave field converges to the periodically steady state. Computational conditions are
asfollows:

Depth of thebody : d =B/2

Lewisform parameter : H,=s =1.0

Depth of wavetank : #=1.25B

Amplitude of wave maker : A/ h =0.015, 0.025, 0.035

Oscillating frequency of wave maker : KB gZWZB/gHZ 0.5,1.0,1.5,20,25,3.0
Tank size: w=61, and the length of effective wave tank =4l

Totally 18 cases are simulated by changing amplitude (three kinds) and frequency (six kinds).

Table.l computationa size and set parameter

Num f N -
A-;:St Casle;B N, u Nt:er © Nz)des N, Dt/T | Regridding | Smoothing CPU[S']I'lme
0.015 0.5 11 94 41 11 15 B/10 A/10 1334
1.0 11 94 41 11 15 B/10 A/10 1320
15 11 94 41 11 15 B/10 A/10 1207
2.0 11 94 41 11 15 B/10 A/10 1163
2.5 11 94 41 11 15 B/10 A/10 1393
3.0 11 94 41 11 15 B/10 A/10 1143
0.025 0.5 11 94 41 11 20 B/10 A/10 1786
1.0 11 94 41 11 20 B/10 A/10 1606
15 11 94 41 11 20 B/10 A/10 1618
2.0 11 94 41 11 20 B/10 A/10 1521
2.5 11 90 41 11 20 B/10 A/10 1731
3.0 11 78 41 11 20 B/10 A/10 1495
0.035 0.5 11 94 41 11 30 B/10 A/10 2412
1.0 11 94 41 11 30 B/10 A/10 2405
15 11 94 41 11 30 B/10 A/10 2416
2.0 11 82 41 11 30 B/15 A/10 2087
2.5 11 78 41 11 30 B/10 A/10 1938
3.0 11 78 41 11 30 B/15 A/10 2147

Regridding : A. noregrigging, B.equal length, C.dueto curvature, D.dueto velocity
Smooting : A. 5pointsformulaby polynomials, B. by smoothing spline
CPU : Celeron 366 MHz
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3.2 Diffraction of regular waves by a fixed body

All computations are carried out for 30 period when the wave field is recognized as
periodically steady state. The computational size and the parameters set in simulations are
shown in Table.1. The wave profiles in the numerical wave tank are shown in from Fig.4 to
Fig.9. Four kinds of wave profiles correspond with states at ¢ = (29+7/4) ,(29+27T/ 4) ,
(29+3774) and 30T, respectively. The wave diffraction is visible in these figures, ie, long

waves transmit to the lee-side of the body, while short waves are amost reflected by the body.
The situation close to standing waves is reached for high frequency’s cases. At three positions
(x=1751,x=201 and x=4.01 ) in the tank, the wave eevations are numericaly
measured. The time series of wave elevations at weather-side of the fixed body are shown as
Fig.10, Fig.11 and Fig.12.
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Fig.2 Wave steepness of propagation waves for infifite depth
by linear theory

Fig2 illustrates wave steepness of a propagating wave generated by a piston wave maker,
which is based on linear theory for deep water waves. In all present smulations, the steepest
case is H/1 »1/12. The smulated time series of sway exciting force F (horizontal
wave-exciting force), heave exciting force F,, (vertical wave-exciting force) and roll exciting
moment M , (wave-exciting moment) acting on a fixed Lewis form body, are shown in from

Fig.13 to Fig.21. As incident waves amplitude increases, the strong non-linearity can be
exposed. Concerning cases with the strongest non-linearity in present simulations, each
component of wave-exciting forces is compared in Fig.3. Although the wave profile with
double crests for one period is one of non-linear characteristics, the hydrostatic component
causes such a wave deformation in case of sway exciting force, while the hydrodynamic
component itself doesin case of heave exciting force.
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Fig.3 The component of wave exiting force, A/h = 0.035.

In the numerical wave tank, the force and the moment acting on a body can be computed as
follows:

FS=-Q pn, ds, Iu
4 i

FH:-Q pn,ds, y (3.0
L [

MRz-QIp(xny-ynx)ds, Ib

where (n,,n,) denotesnormal vector n onabody suface. p isthe pressure expressed by

equation (2.6). The hydrodynamic and hydrostatic components in Fig.3 mean the integration
of pressure p, and p, components respectively.

é 12U U

= r&f, +2NFP Y,
o= rgfr Ny g (32)

p=-rgy . b
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The buoyancy of abody in calm water is excluded from the heave force F,, in (3.1). Sothe
hydrostatic pressure p_ in (3.2) means what the change of instantaneous free surface causes.

The frequency characteristics of these wave-exciting forces are shown in Fig.22, Fig.23
and Fig.24. To evaluate these time series data by a numerical wave tank, the Fourier analysis
is employed by using only data for 5 periods in each time history between Fig.13 and
Fig.21.Thisisjust like analysis for experimental data. All results by the numerical wave tank
are compared with the experimental results and the prediction by linear theory, although the
conditions of water depth are different each other. Experimental data by Nojiri and Murayama
(1975) are quoted from in the present study. As to the prediction by linear theory, the
solutions of the radiation problem for deep water waves can be applied to the solutions of the
present diffraction problem with the Haskind-Newman's relation. Then the wave-exciting
forces for sway, heave and roll mode are expressed as follows:

2ir ;
F, =- —kgnoa,A g iwrtes)

2ir
F, = kgnoa,A e itren)

(3.3)

Zng @ 0 i(we+ey)

MR noa,g —A y

-U—: -_— —:k<\—: —_—— c:

where n, represents an effect of finite water depth with afollowing form and it tendsto 1/2
as h® ¥ .

L O G
2& sinh(2kh) g

In (3.3), Aand e are, respectively, the amplitude ratio and the phase difference between
the body’ s motion and the radiation wave, and suffix lettersS , H and R correspond with sway,
heave and roll mode, respectively. These values are computed by using, it is called, the
Ursell-Tasai method, which is a multi-pole expansions method. Between computational
results by the numerical wave tank and by linear theory, the apparent differences can be
recognized specialy in low frequency. This is because the effect of water depth appears in
computations. In case of a computation for larger i/B, it can be confirmed that the
computation by the numerical wave tank shows a good agreements with the linear theory,
even though it isa computation for asmall KB vaue. Although the wave-exciting forces are
nonlinear as shown in Fig.3, it does not give significant effects to the prediction of the first
order forces. It should be, however, noted that the harmonics components of wave-exciting
forces are substantial in some cases.

The incident waves, the reflected waves and the transmitted waves can be computed from
time series of wave elevations simulated in the numerical wave tank. The reflection and the
transmission coefficients are shown with experimental results in Fig.25. Considering that
condition a” =a%+a? which comes from the assumption that the averaged energy flux is

zero, the results by the numerical wave tank are more reasonable than the experimental ones.
On the other hand, the amplitudes of the reflected wave and the transmitted wave can be
written by using e in (3.3) asfollows:

11



ay/a, =Reg§- (cosZeH - sinzes)+i(coseHsineH +cose  sineg )4, i
; . : . . y (39
ar [a, = Regl- (coszeH +S|n2es)+i(coseHsmeH - cosegsine, )4 . b

Some comparisons of the wave-drift force acting on the fixed Lewis form body is
represented in Fig.26. Asfor the linear theory, the wave-drift force is expressed as follows:

F, 239 +_igl’g(a,2 +a’ - aﬁ) (3.6)
4& sinh(2kh) g
= n,rga (3.7)

Two kinds of predictions by the numerical wave tank are show in Fig.26. One is based on the
direct pressure integral method where the wave-drift force is computed as a time-averaged
value of simulated sway exciting force. The other is by using equation (3.7) with the waves
simulated by the numerical wave tank, which means partly applying the results of the
first-order quantity predicted by the NWT. Although the effects of finite water depth seem to
be demonstrated in case of the direct pressure integral method, the computational accuracy
should be improved. To avoid the errors caused by non-dimensionalizing, the drift force
dimensionalized by constants and the amplitude of incident wave are exhibited in Fig.27 and
Fig.28. The wave-drift force is not proportional to the square of the incident wave in high
frequency. In case that both KB value and wave steepness are large, the computational
accuracy of drift force itself seems to be lost. As to the point that the wave-drift forces in
Fig.26 in case of smal 4/ show lower values, this is partly because the hydrostatic
components make a time averaged value smaller as shown in Fig.3. As the wave height gets
larger and larger, the performance of artificial wave-absorbing zone is expected to be lower
especially for the wave-absorbing zone in front of a wave maker, because the reference values
to absorb waves are set to be equal to linear solutions. Since it is desirable to make the
numerical wave tank size small from a viewpoint of saving computational times, the
development of a wave-absorber is needed. Moreover, the more studies should be added to
about predicting the wave-drift forces by the direct pressure integral method.

12
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4 Conclusions

The fully-nonlinear time domain simulation program is developed to predict the two
dimensional diffraction loads by a fixed Lewis form body in regular waves. The computations
by this numerical wave tank are performed to the diffraction problems with eighteen cases
and compared with other computational results and experimental ones. The most important
points highlighted in this numerical study are as follows:

In the numerical wave tank whose length is 6 wave-length including wave absorbing
zone of 2 wave-length, the stable solutions can be obtained from the rest until the
periodically steady state.

Considering the fundamental frequency component of the simulated wave-exciting
forces acting a fixed Lewis form body, it shows good agreements with the prediction by
linear theory. The effects of the wave height are not recognized for the first order
wave-exciting force.

The simulated wave-exciting force itself includes nonlinear properties in some cases,
and the second harmonics becomes substantial especialy in case of high frequency,
even though the wave height is not so large.

To apply the direct pressure integra method to predicting the wave-drift forces, the
development of the numerical procedure with higher accuracy is needed. However, the
present numerical wave tank can provide computational results enough to predict the
first order wave-exciting forces. So it is also possible to predict the wave-drift forces by
using these results about the first order’s quantity.

The present fully-nonlinear Numerical Wave Tank based on the BEM, in which both velocity
and acceleration field are solved, provides the fruitful computational results to predict the
diffraction loads. Moreover the development of numerical procedure and present computer’s
performance make the computational time more practical. The objective evaluation to present
results and the comparison with other procedures will be supplemented in the 3% workshop of
| SOPE 2000.
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