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1    Introduction 
 
 

This report describes the numerical study on predicting the diffraction loads by a fixed 
Lewis form body in regular waves. The computations are performed by using the 
2D-Numerical Wave Tank, which is the fully-nonlinear time domain simulation program 
originally developed by an author. The main purpose of this study is to confirm the validity of 
a numerical wave tank for the diffraction problem.  
 

The Numerical Wave Tank (NWT) group of the International Society of Offshore and 
Polar Engineers was established at the 5th ISOPE conference in The Hague (1995). At the 
7thconference on Honolulu (1997), it was decided by the member of the group to begin series 
of informal work shop meeting where computational benchmark cases will be defined and 
their results discussed and commented in a special session during the forthcoming ISOPE 
conference. A free access data bank will be created and enriched with the numerical results of 
the participants, so that the everybody can get data files and to perform his own analysis and 
comparison with any other participant. The 1st and the 2nd NWT Workshop session were 
held in ISOPE98 Montreal Conference and ISOPE99 Brest Conference. The problems and 
nemerical results discussed in the previous workshop are already opened at the following 
Web site : 
• ftp://ftp.ec-nantes.fr/NWT/1998/  
• http://www.srimot.go.jp/dyn/member/tanizawa/ 
The 3rd NWT Workshop session will be held in ISOPE2000 Seattle Conference, where the 
topic is the diffraction force computation by numerical wave tanks and pressure computation 
on the body is the key point. 
 

The benchmark cases assigned in the 3rd NWT Workshop are computed in this report. 
Numerical results are compared with the experimental results and theoretical results based on 
linear theory. Only the time-series data of simulated wave exciting forces and wave elevations 
in a tank, and the boundary values for one period in the periodically steady state, are 
requested and these data have been already submitted to the NWT Workshop. 
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2  Fully nonlinear numerical wave tank 
 
 

2.1  Mathematical  formulation 
 

We consider the problem on diffraction of regular waves by a fixed Lewis Form body, as it 
is illustrated in Fig.1. Fluid density r , gravitational acceleration g  and water depth h  are 

used as units to nondimensionalize the problem only in this section. Assuming an inviscid, 
imcompressible fluid and an irrotational flow, the fluid motion is specified by the velocity 
potential ( , , )x y tf , which satisfies the Laplace equation within the fluid domain ( )tW  with 
the boundary ( )tG . 

 
 2 0 in  (t)f W∇ =   (2.1) 

 
The boundary ( )tG consists of the piston wave maker surface ( )P tG , the free surface ( )F tG , 

the Lewis form body surface LG , the right-end wall in the tank WG  and the horizontal 

bottom BG . As time changes, the boundary ( )F tG changes both its shape and its position, and 

the boundary ( )P tG does only its position, while the other ones do neither. 

 
The velocity potential f  satisfies the kinematic and dynamic conditions on the free 

surface. Neglecting the surface tension and choosing zero atmospheric pressure as a level, we 
can write these conditions in the following Lagrangian form: 
 

 on ( ) ,F

D
t

Dt
f G= ∇

r
 (2.2) 
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where r  is the position vector of the fluid particle on the free surface. On the other 
boundaries, the boundary conditions are expressed by the impermeablity conditions for f  as 

follows: 
 

 
( ) on ( ) ,

0 on , and ,
P P
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Gf
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∂
= 

∂ 
 (2.4) 

 
where ( )Pu t  denotes the velocity of the piston wave maker and n  is inward normal 

direction of the boundary. Due to the motion of the wave maker, the free surface is changed 
from the rest to the new position ( , )y x th= . So the initial conditions are expressed by: 
 
 ( , ,0) ( ,0) 0 on (0) .Fx y x= =f h G  (2.5) 

 
Thus the velocity field in the fluid domain can be formulated as the initial value-boundary 
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value problem for the velocity potential f . Then the free surface is a Dirichlet boundary 

where f  is prescribed, while the others are Neumann boundaries where nf∂ ∂  is 

prescribed. 
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The pressure acting on the body can be obtained using the nonlinear Bernoulli equation: 
 

 
21

.
2tp yf f= − − ∇ −  (2.6) 

 
While f∇  can be computed from the solution of the velocity field, the acceleration field 

must be solved for the exact computation of tf . As the more practical approach for the 

computation of tf , the finite difference method can be applied. However, the problem such 

as numerical instabilities still remains in this case. Therefore, in this report, the boundary 
value problem for tf  as well as f  is formulated and the direct solution procedure for tf  

is considered. 
 
The time derivative of the velocity potential tf  satisfies the Laplace equation in the fluid 

domain as well as the velocity potential f . 

 
 2 0 in ( )t tf W∇ =  (2.7) 

 
The boundary condition for tf  on the Dirichlet boundary is expressed by 

 

 
21

on ,
2t Fyf f G= − ∇ −  (2.8) 

 
while, on the Nuemann boundary, the boundary conditions can be written by the following 
forms: 
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where ( )Pa t  is the acceleration of the piston wave maker, s∂ ∂ denotes tangential 

derivative on each boundary. 
 
 
 

2.2  Numerical procedure 
 
2.2.1  Solution by a higher order BEM 
 

Applying the Green’s second identity to the initial value boundary value problem, the 
boundary integral equation is obtained, which have the same form with respect to both f  

and tf  as follows: 

 
( ) ( )( , )

( ) ( ) ( ) ( , ) ( )
( ) ( )t tQ Q

Q QG P Q
c P P d Q G P Q d Q

Q Qn nG G

f f
f G G

f f
   ∂ ∂

= − +   ∂ ∂   ∫ ∫  (2.10) 

 
where P  is a point ( , )P Px y  on the boundary, Q  an integral point ( , )Q Qx y , and ( )c P  the 

interior angle of the boundary at P . ( , )G P Q  is the Green function for the two dimensional 
Laplace equation. Considering the mirror image of ( , )G P Q  regarding the bottom boundary, 

the horizontal bottom boundary BG  can be excluded from the integration boundary G . 
Then ( , )G P Q  is written as a form: 

 
,

1 1
( , ) ln ,

2
G P Q

r rp
 

=  
 

 (2.11) 
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 = − + −

 = − + + +

 

 
A boundary element method (BEM) is used for the solution of the boundary integral equation 
(2.10). The following features are introduced in this work: 
 
• Both the boundary geometry and the field function such as the velocity potential, its flux 

and so on, are discretized with the quadratic isoparametric elements for high accuracy. 

• For the non-singular element where the observation point does not belong to the 
integrated element, a regular Gauss quadrature is used. On the other hand, for the singular 
element, a Gauss quadrature formula for the integrands with a logarithmic singularity is 
applied. 

• On the intersection between the Dirichlet boundary and the Neumann boundary, the 
double nodes are placed. With the velocity potential continuous at this point, the velocity 
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of its intersection is deduced by taking into account the flux of the velocity potential on 
both boundaries. This leads to the advantage to avoid the numerical tangential derivative 
of f . 

• The interior angle ( )c P  is numerically computed by considering a particular Dirichlet 
problem where the uniform velocity potential value is imposed on the whole boundary. 

 
It should be noted that those coefficients of the matrices which derive from the discretization 
of the equation (2.10) are in common for both cases between f  and tf . The solution 

procedure of the boundary value problem must be applied sequentially in time until the 
computation reachs the desired time. As the free surface boundary changes due to time 
evolution, the boundary condition also need to be updated corresponding with a new 
boundary, which is mentioned at the next section. 
 
 
2.2.2 Time marching scheme 
 

The initial value problem concerning the free surface is already formulated by (2.2)(2.3)
(2.5). So the instantaneous geometry and the velocity potential can be computed by 
integrating the ordinary differential equations with respect to a time. The discretized forms of 
these equations are represented as follows: 
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( ) ( )1
( ) ( ) ,

2

( 1,2, , )

i
i i

i
i i
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f
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f D f D

 (2.12) 

 
where ( , )i i ix h=r  is the fluid particles on the free surface, which is i th.node of total 

FN nodes. The computation is performed according to following methods: 
 
• The 4th order Runge-Kutta scheme is employed to integrate the ordinary differential 

equations. 

• Auto time stepping argorithm is introduced to save a computational time. 

 
Although a computation stars with an initially set time step size tD , an current size is 

changed to a smaller size in case of violating the condition: { } { }0Min Maxi jt s cD D u≤ . 

isD denotes the element length defined by nodes ( , 1)i i + , ju  the velocity of j th node. The 

parameter 0c  is always set to 3.0 in present computations. 
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2.2.3  Artificial wave-absorbing zone and motion of wave maker 
 

The artificial wave-absorbing zone is introduced at both ends of the tank as shown in Fig.1. 
The right absorbing zone works for absorbing incoming waves and preventing the reflection 
by the wall, while the left one works to pass the waves generated by the wave maker, but to 
absorb only the waves reflected by a body on the free surface and propagating toward the 
wave maker. Such an artificial wave-absorber can be made realized with additional numerical 
damping terms to the free surface conditions (2.2) (2.3), which are expressed as follows: 
 

 ( )( ) on ( ) ,ref F

D
x t

Dt y
∂

= − −
∂

h f n h h G  (2.13) 

 

 ( )21
( ) on ( ) ,

2 ref F

D
y x t

Dt
= ∇ − − −

f f n f f G  (2.14) 

 
where ( )xn  is the damping coefficient: 
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l

 −  ≤   = ≤ ≤ −


− +  − ≤   

 (2.15) 

 
In the definition of ( )xn , w  and l  are angular frequency and wave length of incident 

wave respectively. The parameter a is the strength of damping and it is set as unit here. In 
the equations(2.13)(2.14), the artificial wave absorbing zone damps down the differences 

ref−h h  and ref−f f . The reference values are set to 0ref refh f= =  and for using in front of 

the right-end wall, while these values about waves generated by the wave maker should be set 
to for using in case of the wave maker. In the present work, the solutions of propagating 
waves by linear theory are approximately used as both reference values. 
 

 

{ } ( ){ }

24 sinh ( )
( , ) cos( ) ,

2 sinh(2 )

4 tanh( )sinh( )
( , , ) cosh sin( ) ,

2 sinh(2 )

A kh
x t kx t

kh kh

A kh kh
x y t k y h kx t

kh kh

h w

f w
w


= − + 


= + −
+ 

 (2.16) 

 
where A  is a motion amplitude of the piston wave maker and k  is the wave number of 
propagating waves generated by the wave maker. 
 

In the present numerical wave tank, the motion ( )Pl t  of the piston wave maker is 

expressed as follows: 
 

 ( )2

( ) ( ) sin ,

( ) 1 exp 25 ,

Pl t f t A t

f t t

w= 
= − − 

 (2.17) 
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where the time-function ( )f t  makes it possible for the motion to start from the rest and 

increase gradually. In case of this time-function, it takes about three periods to reach the 
steady state. 
 
 
2.2.4  Regridding and smoothing technique 
 

The regridding every some time steps is carried out in simulating, which is one of 
successful technique for a long time simulation and also important from a viewpoint of 
simulating with high accuracy. For some nodes located near a wave maker moves rapidly 
toward a downstream direction especially in case of generating waves with a large amplitude 
motion, which leads to poor accuracy. In the present numerical wave tank, some grid systems 
are supplied, such as a grid system to make each element length equal and one to control the 
nodal density based on the geometrical curvature or the velocity of the node. The appropriate 
grid system can be chosen from them according to problems. Furthermore, the smoothing 
technique based on polynomials or B-spline also can be employed. This is effective to remove 
the numerical instability such as saw-toothed instability and so high frequency components in 
waves. 
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3  Numerical simulations 
 
 

3.1  Description of case study 
 

The numerical simulation is started from the calm condition at time 0t = , and continued 
until the wave field converges to the periodically steady state. Computational conditions are 
as follows: 
 
• Depth of the body : / 2d B=  
• Lewis form parameter : 0H =s =1.0 

• Depth of wave tank : 1.25h B=  

• Amplitude of wave maker : / 0.015, 0.025, 0.035A h =  

• Oscillating frequency of wave maker : 2 0.5,1.0,1.5, 2.0, 2.5, 3.0KB B g = = w  

• Tank size : 6w = l , and the length of effective wave tank 4= l  

 
Totally 18 cases are simulated by changing amplitude (three kinds) and frequency (six kinds). 
 

Table .1  computational size and set parameter 

Test case Number of Nodes 
/A h  KB  PN  FN  LN  WN  /t T∆  Regridding Smoothing 

CPU Time 
[s] 

0.015 0.5 11 94 41 11 15 B/10 A/10 1334 
 1.0 11 94 41 11 15 B/10 A/10 1320 
 1.5 11 94 41 11 15 B/10 A/10 1207 
 2.0 11 94 41 11 15 B/10 A/10 1163 
 2.5 11 94 41 11 15 B/10 A/10 1393 
 3.0 11 94 41 11 15 B/10 A/10 1143 

0.025 0.5 11 94 41 11 20 B/10 A/10 1786 
 1.0 11 94 41 11 20 B/10 A/10 1606 
 1.5 11 94 41 11 20 B/10 A/10 1618 
 2.0 11 94 41 11 20 B/10 A/10 1521 
 2.5 11 90 41 11 20 B/10 A/10 1731 
 3.0 11 78 41 11 20 B/10 A/10 1495 

0.035 0.5 11 94 41 11 30 B/10 A/10 2412 
 1.0 11 94 41 11 30 B/10 A/10 2405 
 1.5 11 94 41 11 30 B/10 A/10 2416 
 2.0 11 82 41 11 30 B/15 A/10 2087 
 2.5 11 78 41 11 30 B/10 A/10 1938 
 3.0 11 78 41 11 30 B/15 A/10 2147 

  
   Regridding  :  A. no regrigging,  B. equal length,  C. due to curvature,  D. due to velocity   

   Smooting    :  A. 5points formula by polynomials,  B. by smoothing spline

   CPU            :  Celeron 366 MHz

 
 
 
 
 
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3.2  Diffraction of regular waves by a fixed body 
 

All computations are carried out for 30 period when the wave field is recognized as 
periodically steady state. The computational size and the parameters set in simulations are 
shown in Table.1. The wave profiles in the numerical wave tank are shown in from Fig.4 to 
Fig.9. Four kinds of wave profiles correspond with states at t = (29 / 4)T+ , (29 2 / 4)T+ , 
(29 3 / 4)T+  and 30T , respectively. The wave diffraction is visible in these figures, ie, long 

waves transmit to the lee-side of the body, while short waves are almost reflected by the body. 
The situation close to standing waves is reached for high frequency’s cases. At three positions 
( 1.75x l= , 2.0x l= and 4.0x l= ) in the tank, the wave elevations are numerically 

measured. The time series of wave elevations at weather-side of the fixed body are shown as 
Fig.10, Fig.11 and Fig.12. 
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Fig.2   Wave steepness of propagation waves for infifite depth
           by linear theory

A/h  = 0 .015

A/h  =  0 .025

A/h  =  0 .035

 
Fig2 illustrates wave steepness of a propagating wave generated by a piston wave maker, 

which is based on linear theory for deep water waves. In all present simulations, the steepest 
case is / 1/12H l ≈ . The simulated time series of sway exciting force SF (horizontal 
wave-exciting force), heave exciting force HF (vertical wave-exciting force) and roll exciting 
moment RM (wave-exciting moment) acting on a fixed Lewis form body, are shown in from 

Fig.13 to Fig.21. As incident waves’ amplitude increases, the strong non-linearity can be 
exposed. Concerning cases with the strongest non-linearity in present simulations, each 
component of wave-exciting forces is compared in Fig.3. Although the wave profile with 
double crests for one period is one of non-linear characteristics, the hydrostatic component 
causes such a wave deformation in case of sway exciting force, while the hydrodynamic 
component itself does in case of heave exciting force. 
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Fig.3  The component of wave exiting force , A/h = 0.035.

 
In the numerical wave tank, the force and the moment acting on a body can be computed as 
follows: 
 

 

,

,

( ) ,

L

L

L

S x

H y

R y x

F p n ds

F p n ds

M p xn yn ds

G

G

G

= − 


= − 

= − −


∫
∫
∫

 (3.1) 

 
where ( , )x yn n  denotes normal vector n  on a body suface. p is the pressure expressed by 

equation (2.6). The hydrodynamic and hydrostatic components in Fig.3 mean the integration 
of pressure dp  and sp  components respectively. 

 

 
21

,
2

.

d t

s

p

p g y

r f f

r

 = − + ∇    
= − 

 (3.2) 
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The buoyancy of a body in calm water is excluded from the heave force HF  in (3.1). So the 

hydrostatic pressure sp  in (3.2) means what the change of instantaneous free surface causes. 

The frequency characteristics of these wave-exciting forces are shown in Fig.22, Fig.23 
and Fig.24. To evaluate these time series data by a numerical wave tank, the Fourier analysis 
is employed by using only data for 5 periods in each time history between Fig.13 and 
Fig.21.This is just like analysis for experimental data. All results by the numerical wave tank 
are compared with the experimental results and the prediction by linear theory, although the 
conditions of water depth are different each other. Experimental data by Nojiri and Murayama 
(1975) are quoted from in the present study. As to the prediction by linear theory, the 
solutions of the radiation problem for deep water waves can be applied to the solutions of the 
present diffraction problem with the Haskind-Newman’s relation. Then the wave-exciting 
forces for sway, heave and roll mode are expressed as follows: 
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k

w e

w e

w e
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− +
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
= − 


= 

 =  

  

 (3.3) 

 
where 0n  represents an effect of finite water depth with a following form and it tends to 1 2  

as h → ∞ . 

 0

1 2
1

2 sinh(2 )

kh
n

kh

 
= + 

 
 (3.4) 

 
In (3.3), A and e  are, respectively, the amplitude ratio and the phase difference between 
the body’s motion and the radiation wave, and suffix letters S , H and R correspond with sway, 
heave and roll mode, respectively. These values are computed by using, it is called, the 
Ursell-Tasai method, which is a multi-pole expansions method. Between computational 
results by the numerical wave tank and by linear theory, the apparent differences can be 
recognized specially in low frequency. This is because the effect of water depth appears in 
computations. In case of a computation for larger /h B , it can be confirmed that the 
computation by the numerical wave tank shows a good agreements with the linear theory, 
even though it is a computation for a small KB  value. Although the wave-exciting forces are 
nonlinear as shown in Fig.3, it does not give significant effects to the prediction of the first 
order forces. It should be, however, noted that the harmonics components of wave-exciting 
forces are substantial in some cases. 
 

The incident waves, the reflected waves and the transmitted waves can be computed from 
time series of wave elevations simulated in the numerical wave tank. The reflection and the 
transmission coefficients are shown with experimental results in Fig.25. Considering that 
condition 2 2 2

I R Ta a a= +  which comes from the assumption that the averaged energy flux is 

zero, the results by the numerical wave tank are more reasonable than the experimental ones.  
On the other hand, the amplitudes of the reflected wave and the transmitted wave can be 
written by using e  in (3.3) as follows: 



 12

 
( ) ( )

( ) ( )

2 2

2 2

Re cos sin cos sin cos sin ,

Re 1 cos sin cos sin cos sin .

R I H S H H S S

T I H S H H S S

a a i

a a i

e e e e e e

e e e e e e

 = − − + +  


 = − + + −   

 (3.5) 

 
Some comparisons of the wave-drift force acting on the fixed Lewis form body is 

represented in Fig.26. As for the linear theory, the wave-drift force is expressed as follows: 
 

 ( )2 2 21 2
1

4 sinh(2 )D I R T

kh
F g a a a

kh
r

 
= + + − 

 
 (3.6) 

 2
0 Rn g ar=  (3.7) 

 
Two kinds of predictions by the numerical wave tank are show in Fig.26. One is based on the 
direct pressure integral method where the wave-drift force is computed as a time-averaged 
value of simulated sway exciting force. The other is by using equation (3.7) with the waves 
simulated by the numerical wave tank, which means partly applying the results of the 
first-order quantity predicted by the NWT. Although the effects of finite water depth seem to 
be demonstrated in case of the direct pressure integral method, the computational accuracy 
should be improved. To avoid the errors caused by non-dimensionalizing, the drift force 
dimensionalized by constants and the amplitude of incident wave are exhibited in Fig.27 and 
Fig.28. The wave-drift force is not proportional to the square of the incident wave in high 
frequency. In case that both KB  value and wave steepness are large, the computational 
accuracy of drift force itself seems to be lost. As to the point that the wave-drift forces in 
Fig.26 in case of small /A h  show lower values, this is partly because the hydrostatic 
components make a time averaged value smaller as shown in Fig.3. As the wave height gets 
larger and larger, the performance of artificial wave-absorbing zone is expected to be lower 
especially for the wave-absorbing zone in front of a wave maker, because the reference values 
to absorb waves are set to be equal to linear solutions. Since it is desirable to make the 
numerical wave tank size small from a viewpoint of saving computational times, the 
development of a wave-absorber is needed. Moreover, the more studies should be added to 
about predicting the wave-drift forces by the direct pressure integral method. 
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Fig.7  Wave profiles in the numerical wave tank, KB = 2.0
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Fig.8  Wave profiles in the numerical wave tank,  KB = 2.5
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Fig.10   Wave elevations, A/h=0.015 .
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Fig.11  Wave elevations, A/h=0.025 .
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Fig.12  Wave elevations, A/h=0.035 .
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Fig.13  Simulated time series of sway exciting force acting

KB=0.5 

on a fixed Lewis form body, A/h = 0.015 .
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Fig.14  Simulated time series of sway exciting force acting

KB=0.5 

on a fixed Lewis form body, A/h = 0.025 .
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Fig.15  Simulated time series of sway exciting force acting

KB=0.5 

on a fixed Lewis form body, A/h = 0.035 .
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Fig.16  Simulated time series of heave exciting force acting

KB=0.5 

on a Lewis form body, A/h = 0.015 .
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Fig.17  Simulated time series of heave exciting force acting

KB=0.5 

on a fixed Lewis form body, A/h = 0.025 .
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Fig.18  Simulated time series of heave exciting force acting

KB=0.5 

on a fixed Lewis form body, A/h = 0.035 .
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Fig.19  Simulated time series of roll exciting moment acting

KB=0.5 

on a Lewis form body, A/h = 0.015.
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Fig.20  Simulated time series of roll exciting moment acting

KB=0.5 

on a fixed Lewis form body, A/h = 0.025.
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Fig.21  Simulated time series of roll exciting moment acting

KB=0.5 

on a fixed Lewis form body, A/h = 0.035.
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Fig.22  Heave exciting force acting on a fixed Lewis form body
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Fig.23  Sway exciting force acting on a fixed Lewis form body
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Fig.24  Roll exciting moment acting on a fixed Lewis form body
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Fig.25  Reflection coefficient C R and transmission coefficient C T
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Fig.27  Wave-drift force computed by direct pressure integral
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4  Conclusions 
 
 
 

The fully-nonlinear time domain simulation program is developed to predict the two 
dimensional diffraction loads by a fixed Lewis form body in regular waves. The computations 
by this numerical wave tank are performed to the diffraction problems with eighteen cases 
and compared with other computational results and experimental ones. The most important 
points highlighted in this numerical study are as follows: 
 

• In the numerical wave tank whose length is 6 wave-length including wave absorbing 
zone of 2 wave-length, the stable solutions can be obtained from the rest until the 
periodically steady state. 

• Considering the fundamental frequency component of the simulated wave-exciting 
forces acting a fixed Lewis form body, it shows good agreements with the prediction by 
linear theory. The effects of the wave height are not recognized for the first order 
wave-exciting force. 

• The simulated wave-exciting force itself includes nonlinear properties in some cases, 
and the second harmonics becomes substantial especially in case of high frequency, 
even though the wave height is not so large. 

• To apply the direct pressure integral method to predicting the wave-drift forces, the 
development of the numerical procedure with higher accuracy is needed. However, the 
present numerical wave tank can provide computational results enough to predict the 
first order wave-exciting forces. So it is also possible to predict the wave-drift forces by 
using these results about the first order’s quantity. 

The present fully-nonlinear Numerical Wave Tank based on the BEM, in which both velocity 
and acceleration field are solved, provides the fruitful computational results to predict the 
diffraction loads. Moreover the development of numerical procedure and present computer’s 
performance make the computational time more practical. The objective evaluation to present 
results and the comparison with other procedures will be supplemented in the 3rd workshop of 
ISOPE 2000. 
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