Creation of Very Large Floating Structures (VLFS) &

Very Large-scale Applied/computational Mechanics

Marine Engineering Lab., Department of Mechanical Systems Eng.

SETO Hideyuki(Prof.), KIHARA Hajime(Lect.), OKAHATA Go(Asist.)

1 Social & economical background

- •Limitation of further use of land in urban areas (population, houses, plants, airports, etc.)
- •Use of ocean space by stationing VLFS several km long and wide as floating social bases (seismic isolation, environment preservation, etc.)

2 Conception of VLFS

Artist's conception of a MEGA-FLOAT

3 Difficulties in VLFS

- •Shallow draft VLFS in protected water area
- •Limitation to experimental facilities & models
- Few experiences in VLFS design & construction

Requirement: Versatile design by analysis tools based on large-scale hydroelastic simulation to realistic VLFS in protected sea

- Validation & verification of various structural models to VLFS
- New FE formulation for large-scale water wave analysis and fast algorithms
- Large-scale modal structure-water wave interactions analysis on EWS/PC

4 Structure water wave interactions

- 3D hydroelastic response analysis for detail design
- •Structural analysis

Finite element method (NASTRAN)

- Water—wave analysis
 Hybrid finite/infinite element method of domain decomposition type
- •Structure water wave interaction analysis

Flow chart of the present analysis

5 Innovation on water wave analysis

BEM-like FEM(hybrid prism element+Domain Decomp.)

6 Innovation on structural analysis

Structure models of VLFS

 $(1000 \text{m} \times 60 \sim 120 \text{m} \times 3 \text{m}/1 \text{m})$

Estimated computation size(d.o.f.)

	Structural models	Model property	Element size	300*60m (1 unit)	1200*240m (16 units)	4800*1600m (434 units)
	2D-model	Plate -orthotropic -sandwich	@10m	600	9,000	240,000
	3D-simpl. model	w/o openings	@lm	20,000	220,000	8,000,000
	3D-detail model	w/ openings, rough mesh	@10cm	200,000	3,000,000	80,000,000
	Hybrid model-s	3D-simpl. +2D model		-	120,000 (3D /1 unit)	320,000 (3D/1 unit)
	Hybrid model-d	3D-detail +2D model		_	360,000 (3D /1 unit)	600,000 (3D/1 unit)
	3D-local model	w/ openings, fine mesh	@1cm	20,000,000	300,000,000	8000,000,000

7 Elastic response of Phase-II model (orthotropic plate approximation)

Wave Height Distribution

Bird-eye view of displacement amplitude

Elastic resp. of 3D structure model (1200m VLFS)

Bird-eye view of displacement amplitude [wave period 7.0s (λ /L=0.06), incident angle β =0°]