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Abstract

This note derives the Boussinesq approximation in a manner consistent with the
conservation law of mass. It is shown that the governing equations of a fluid under
the approximation can be obtained on the basis of the assumption that the fluid is
incompressible, in the sense that the density of the fluid is constant. The equation
of motion, in particular, can be formulated with the help of the conservation law of
energy. The conditions for the approximation to be valid are also discussed.

1. Introduction

The Boussinesq approximation is widely used to describe the motion of a fluid with a
nonuniform temperature distribution. In deriving the approximation, it is traditionally
assumed that the density of the fluid is a linear function only of the temperature of the
fluid (see e.g. Landau & Lifshitz 1987, § 56; Mihaljan 1962). It can be shown, however,
that this assumption violates the conservation law of mass (Maruyama 2014). This is a
fatal defect of the traditional method for deriving the approximation.
Thus, in view of the importance of the approximation, this note introduces a method

to derive the approximation in a manner consistent with the conservation law of mass:
the fluid is assumed to be incompressible in the sense that its density is constant. It is
shown that the need for the buoyancy force in the approximation can be inferred on the
basis of the conservation law of energy. The conditions necessary for the approximation
to be valid (Spiegel & Veronis 1960) are also revised accordingly.

2. Governing equations under the Boussinesq approximation

We consider the motion of a fluid in a uniform gravitational field; it is assumed that
the fluid occupies a fixed domain Ω. We set up in the domain a system of rectangular
coordinates (x1, x2, x3) with the x3-axis taken vertically upwards. The unit vectors in
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the positive x1-, x2-, and x3-directions are respectively denoted by e1, e2, and e3. In
the following, Latin indices are consistently used to represent the numbers 1, 2, and 3;
the summation convention is also implied.

2.1. Basic assumptions

First of all, we assume that the fluid is incompressible in the sense that the density ρ
of the fluid is constant:

ρ = ρ0. (2.1)

The thermal expansion coefficient β of the fluid, however, is assumed not to vanish:

β = v−1(∂v/∂T )p ̸= 0, (2.2)

where v = ρ−1 is the specific volume of the fluid; T and p are the temperature and the
pressure of the fluid, respectively. We assume that T can be expressed in the form

T = T0 + T ′, (2.3)

where T0 is a constant reference temperature, and T ′ the small deviation from T0. We
also write p, denoting by p′ the small perturbation pressure, as follows:

p = p0 + p′. (2.4)

Here the hydrostatic pressure p0 is defined by

p0 = −ρ0gx3 + constant, (2.5)

in which g denotes the acceleration due to gravity.

2.2. Equation of continuity

Now, let us consider the equation of continuity

ρ−1Dρ/Dt+∇ · u = 0, (2.6)

in which D/Dt denotes the material derivative, and u is the velocity of the fluid. The
substitution of (2.1) into (2.6) yields

∇ · u = 0. (2.7)

This is the equation of continuity under the Boussinesq approximation.

2



2.3. Equation of motion

Let us next consider the equation of motion: using (2.4), it can be written as

ρ
Du

Dt
= −∇p′ +

∂τij
∂xj

ei − (ρ− ρ0)ge3, (2.8)

where τij are the components of the viscous stress tensor. Substituting (2.1) into (2.8),
we obtain

ρ0
Du

Dt
= −∇p′ +

∂τij
∂xj

ei. (2.9)

This equation, however, must contain an additional term in order to be consistent with
the conservation law of energy; our aim in the following is to demonstrate this fact.
To this end, we first need to consider the total energy of the fluid:∫

Ω
ρ0

(
1
2 |u|

2 + gx3 + e
)
dV. (2.10)

Here e denotes the specific internal energy of the fluid. The conservation law of energy
requires that this energy should satisfy the equation

d

dt

∫
Ω
ρ0

(
1
2 |u|

2 + gx3 + e
)
dV =

∫
Σ
uiτijnjdS −

∫
Σ
q · ndS, (2.11)

in which Σ denotes the boundary of Ω, and n the unit outward normal on Σ; ui and nj

are the components of u and n, respectively; q is the heat flux density due to thermal
conduction. This equation states that the total energy of the fluid changes owing to the
work done by the viscous force acting on Σ and owing to the heat transfer across Σ.
On the other hand, it is obvious that

d

dt

∫
Ω
ρ0gx3 dV = 0. (2.12)

Thus the potential energy of the fluid is invariable.
We next proceed to derive, after Maruyama (2014), the equation that describes the

rate of change of the internal energy of the fluid. This equation can be obtained from
the general equation of heat transfer (see Landau & Lifshitz 1987, § 49):

ρT
Ds

Dt
= τij

∂ui
∂xj

−∇ · q, (2.13)

where s denotes the specific entropy of the fluid, and the first term on the right-hand
side represents the heating due to viscous dissipation.
Now, regarding s as a function of T and p, we obtain

Ds

Dt
=

(
∂s

∂T

)
p

DT

Dt
+

(
∂s

∂p

)
T

Dp

Dt
. (2.14)
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Here, as is well known in thermodynamics, (∂s/∂T )p and (∂s/∂p)T are given by(
∂s

∂T

)
p

=
cp
T
,

(
∂s

∂p

)
T

= −
(
∂v

∂T

)
p

= −vβ, (2.15)

where cp is the specific heat at constant pressure. These coefficients may be evaluated
at T = T0 and p = p0, for T and p deviate only slightly from T0 and p0. We then have,
since v = v0 = ρ−1

0 ,
Ds

Dt
=

cp0
T0

DT ′

Dt
− v0β0

(
Dp0
Dt

+
Dp′

Dt

)
, (2.16)

where (2.3) and (2.4) have been used; we have also introduced the notation

cp0 = cp(T0, p0), β0 = β(T0, p0). (2.17)

It should be noted that cp0 and β0 may depend on x3 through p0.
Similarly, when s is regarded as a function of e and v, we get

Ds

Dt
=

1

T0

De

Dt
+

p0
T0

Dv

Dt
. (2.18)

However, since Dv/Dt = Dρ−1/Dt = 0, it follows that

Ds

Dt
=

1

T0

De

Dt
. (2.19)

As a consequence, using (2.1), (2.3), (2.16), and (2.19), we have

ρT
Ds

Dt
= ρ0T0

Ds

Dt
+ ρ0T

′Ds

Dt

= ρ0
De

Dt
+ ρ0T

′
{
cp0
T0

DT ′

Dt
− v0β0

(
Dp0
Dt

+
Dp′

Dt

)}
. (2.20)

However, since Dp0/Dt = −ρ0gu3, (2.20) gives, to the first order of primed variables,

ρT
Ds

Dt
= ρ0

De

Dt
+ ρ0β0T

′gu3. (2.21)

Substituting this into (2.13), we obtain

ρ0
De

Dt
= τij

∂ui
∂xj

−∇ · q − ρ0β0T
′gu3. (2.22)

The integration of (2.22) over Ω yields

d

dt

∫
Ω
ρ0edV =

∫
Ω
τij

∂ui
∂xj

dV −
∫
Σ
q · ndS −

∫
Ω
ρ0β0T

′gu3dV. (2.23)

This is the desired equation for the rate of change of the internal energy.
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We can now derive the equation describing the rate of change of the kinetic energy of
the fluid by subtracting (2.12) and (2.23) from (2.11):

d

dt

∫
Ω

1
2ρ0|u|

2dV =

∫
Σ
uiτijnjdS −

∫
Ω
τij

∂ui
∂xj

dV +

∫
Ω
ρ0β0T

′gu3dV. (2.24)

We observe from this equation that (2.9) must contain the term

ρ0β0T
′ge3. (2.25)

The force represented by this term is referred to as the buoyancy force. Thus we get

ρ0
Du

Dt
= −∇p′ +

∂τij
∂xj

ei + ρ0β0T
′ge3. (2.26)

This is the equation of motion under the Boussinesq approximation. In (2.26), τij are
given, for example, by

τij = η

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.27)

in which η is the dynamic viscosity. It should be emphasized that the work done by the
buoyancy force corresponds to the conversion between kinetic and internal energy; this
indicates that the origin of the buoyancy force is the pressure gradient force.
Before closing this subsection, it is worth noting that, as shown in the appendix, the

need for the buoyancy force can also be inferred from a simple thought experiment.

2.4. Temperature equation

From (2.16) and (2.19), we have

ρ0
De

Dt
= ρ0cp0

DT ′

Dt
− β0T0

(
Dp0
Dt

+
Dp′

Dt

)
. (2.28)

The substitution of (2.28) into (2.22) yields the following temperature equation:

ρ0cp0
DT ′

Dt
= τij

∂ui
∂xj

−∇ · q +

{
β0T0

(
Dp0
Dt

+
Dp′

Dt

)
− ρ0β0T

′gu3

}
. (2.29)

Here q is given, for example, by Fourier’s law:

q = −k∇T ′, (2.30)

where k denotes the thermal conductivity. This is the temperature equation under the
Boussinesq approximation consistent with the conservation law of energy.

3. Summary and discussion

The Boussinesq approximation has been reconstructed in a manner consistent with
the conservation law of mass. It has been shown that the governing equations of a fluid
under the approximation can be obtained on the basis of the following assumption: the
fluid is incompressible in the sense that its density is constant. The equation of motion
can in particular be formulated with the help of the conservation law of energy.
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3.1. Applicability of the Boussinesq approximation

We are now in a position to discuss what conditions are necessary for the Boussinesq
approximation to be applicable to a specific motion of a compressible fluid. We assume
that the motion possesses the following characteristic scales: a time scale τ , a velocity
scale U , and a length scale L. Let also the scale of the temperature difference of the
fluid be denoted by ∆T ′. As in § 2, T0 denotes a constant reference temperature; ρ0 in
the following should be interpreted as a constant reference density.
We first recall (2.3). This expression states that the temperature of the fluid varies

only slightly from T0. Hence ∆T ′ must be very small compared with T0:

∆T ′/T0 ≪ 1. (3.1)

In (2.4), on the other hand, the variation of the perturbation pressure p′ is taken to
be very small compared with that of the hydrostatic pressure p0. Thus we must have

|∇p′|/|∇p0| ≪ 1. (3.2)

Here, in view of (2.5), |∇p0| is given by

|∇p0| = ρ0g. (3.3)

As for |∇p′|, the following inequality can be obtained from (2.8):

|∇p′| ≤ |ρ(u · ∇)u|+ |ρ(∂u/∂t)|+ |(∂τij/∂xj)ei|+ |(ρ− ρ0)ge3|. (3.4)

It therefore follows that, if each of the terms on the right-hand side of (3.4) is very small
compared with ρ0g, (3.2) is satisfied. In the following, we examine each term in turn.
We can estimate the first term on the right-hand side of (3.4) as follows:

|ρ(u · ∇)u| = O(ρ0U
2/L). (3.5)

This term, therefore, is very small compared with ρ0g when

U/(gL)1/2 ≪ 1. (3.6)

The second term can also be estimated as

|ρ(∂u/∂t)| = O(ρ0U/τ). (3.7)

Hence this term is very small compared with ρ0g when, together with (3.6),

(L/τ)/(gL)1/2 ≪ 1 (3.8)

applies. Regarding the third term, we observe that, if (2.27) may be employed,

|(∂τij/∂xj)ei| = O(ηU/L2). (3.9)
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Then this term also is very small compared with ρ0g when (3.6) and

ν/{(gL)1/2L} ≪ 1 (3.10)

are satisfied. Here ν = η/ρ0 is the kinematic viscosity.
In order to estimate the last term of (3.4), we note here the thermodynamic relation

dρ = (γ/a2)dp− ρβdT, (3.11)

where γ is the ratio of specific heats, and a the speed of sound. This allows us to write

|ρ− ρ0| = O(γ∆p/a2) +O(ρ0β0∆T ′). (3.12)

Here ∆p denotes the scale of the pressure variation. Now, let the vertical extent of the
fluid be denoted by H. Then it is reasonable to put

∆p = ρ0gH. (3.13)

In consequence, the last term of (3.4) can be estimated as follows:

|(ρ− ρ0)ge3| = O(γρ0g
2H/a2) +O(ρ0β0∆T ′g). (3.14)

Accordingly, since γ = O(1), this term is very small compared with ρ0g when

(gH)1/2/a ≪ 1, β0∆T ′ ≪ 1. (3.15)

It is interesting to note that, for an ideal gas, the second condition in (3.15) is identical
to (3.1). This is because β0 = T−1

0 for an ideal gas.
The basic assumption (2.1) is also justifiable under (3.15); as is apparent from (3.12)

and (3.13), |ρ− ρ0|/ρ0 ≪ 1 under (3.15). The remaining assumption (2.2) is commonly
satisfied. Thus the conditions for the Boussinesq approximation to be applicable to the
motion have all been formulated: (3.1), (3.6), (3.8), (3.10), and (3.15).

3.2. Further approximations to the temperature equation

Although the temperature equation (2.29) is consistent with the conservation law of
energy, it is somewhat hard to deal with. Thus, for practical purposes, it is desirable to
introduce further approximations to the equation.
Let us consider again the fluid motion in § 3.1. We can approximate the terms in the

braces on the right-hand side of (2.29), ignoring terms containing primed variables, as{
β0T0

(
Dp0
Dt

+
Dp′

Dt

)
− ρ0β0T

′gu3

}
≈ β0T0

Dp0
Dt

= −ρ0β0T0gu3. (3.16)

The term representing the heating due to viscous dissipation, with τij given by (2.27),
can also be ignored in comparison with the term ρ0β0T0gu3 when the condition

(1/β0T0)
[
ν/{(gL)1/2L}

]
≪ 1 (3.17)
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holds in addition to (3.6). In this case, (2.29) takes the form

ρ0cp0
DT ′

Dt
= −∇ · q − ρ0β0T0gu3. (3.18)

However, the last term of (3.18) can further be ignored when

Γ0H/∆T ′ ≪ 1, (3.19)

where Γ0 = β0T0g/cp0 is the adiabatic lapse rate. We then obtain

ρ0cp0
DT ′

Dt
= −∇ · q. (3.20)

This is in fact the temperature equation in the original Boussinesq approximation.

3.3. Potential temperature under the Boussinesq approximation

When the temperature equation is approximated by (3.18), we can employ, in place
of T ′, the potential temperature θ defined by

θ = θ0 + T ′, θ0 = T0 +

∫ x3

ζa

Γ0(x
′
3)dx

′
3. (3.21)

Here the integral is taken from an arbitrary reference level x′3 = ζa. In terms of θ, the
temperature equation (3.18) is written as

ρ0cp0
Dθ

Dt
= −∇ · q. (3.22)

The equation of motion (2.26) can also be written as

ρ0
Du

Dt
= −∇p̂′ +

∂τij
∂xj

ei + ρ0β0θge3, (3.23)

where p̂′ is the modified perturbation pressure defied by

p̂′ = p′ + ρ0g

∫ x3

ζa

β0(x
′
3)θ0(x

′
3)dx

′
3. (3.24)

Comparing (3.22) with (3.20), and (3.23) with (2.26), we observe that θ plays formally
the same role as T ′ in the original Boussinesq approximation.
However, it is also important to pay attention to the difference between θ and T ′. Let

us consider, as an example, Fourier’s law (2.30). It is expressed in terms of θ as follows:

q = −k∇θ + kΓ0e3. (3.25)

Hence the heat flux density q, which is proportional to ∇T ′, is not proportional to ∇θ.
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This fact becomes significant, for example, when an adiabatic condition is imposed on
a fixed boundary x3 = ζb. Expressing the condition in terms of T ′, we have

(∂T ′/∂x3)|x3=ζb = 0. (3.26)

On the other hand, the same condition requires that

(∂θ/∂x3)|x3=ζb = Γ0(ζb). (3.27)

It therefore follows that θ must satisfy a condition formally different from that for T ′.
As is evident from the above discussion, θ is not a mere substitute for T ′. This is not

surprising considering the following fact: potential temperature is a measure of specific
entropy (see e.g. Gill 1982); it is, despite its name, a quantity essentially different from
temperature.

Appendix. Another derivation of the buoyancy force

We consider the same physical situation as that in § 2, but the fluid is now assumed
to be at rest. Let us first take a fluid element of unit volume in the fluid: it is referred
to as element A, and its temperature is Ta. We next consider another fluid element of
unit volume referred to as element B: its position relative to element A is eidxi, and its
temperature is Tb. The fluid elements have the same mass ρ0, and Ta and Tb are not so
different. Our aim in this appendix is to analyze the quasistatic process of adiabatically
interchanging the positions of the fluid elements in order to derive the buoyancy force
in the Boussinesq approximation.
Let us focus attention on element A. When its position is adiabatically interchanged

with that of element B, the specific entropy s remains unchanged. Hence the change in
temperature dTa of element A can be calculated from

dTa =

(
∂T

∂p

)
s

dpa. (A.1)

Here dpa denotes the change in pressure experienced by element A when it is displaced
vertically by dx3; since the pressure is hydrostatic, dpa is given by

dpa = −ρ0gdx3. (A.2)

We can also write, using (2.15), the coefficient on the right-hand side of (A.1) as(
∂T

∂p

)
s

= −
(
∂s

∂p

)
T

/(
∂s

∂T

)
p

=
v0βTa

cp
, (A.3)

where β and cp are regarded as constant. Thus, from (A.1), (A.2), and (A.3), we have

dTa = −βTag

cp
dx3. (A.4)
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As a result, the temperature of element A after the process is found to be

Ta −
βTag

cp
dx3. (A.5)

Similarly, the temperature of element B after the process can be obtained as follows:

Tb +
βTbg

cp
dx3. (A.6)

On the basis of these results, we wish to analyze the change in the energy of the system
consisting of the two fluid elements.
The kinetic energy of the system remains zero in the above quasistatic process since

both the fluid elements are stationary throughout the process. The potential energy of
the system is also unchanged: the potential energy of element A increases by ρ0gdx3,
but that of element B decreases by the same amount. However, as explained below, the
internal energy of the system changes through the process.
Let us consider again element A after the above quasistatic process. In view of (A.5),

its temperature becomes Tb if the following amount of heat is removed:

ρ0cp

(
Ta − Tb −

βTag

cp
dx3

)
. (A.7)

Similarly, the temperature of element B becomes Ta if we remove an amount of heat

ρ0cp

(
Tb − Ta +

βTbg

cp
dx3

)
. (A.8)

Thus, removing from the two fluid elements after the process an amount of heat

ρ0cp

(
Ta − Tb −

βTag

cp
dx3

)
+ ρ0cp

(
Tb − Ta +

βTbg

cp
dx3

)
, (A.9)

we can restore the initial state of the process: the position of a fluid element of unit
volume with T = Tb is eidxi relative to one with T = Ta. This proves that the internal
energy of the system of the two fluid elements increases through the process by

ρ0β(Tb − Ta)gdx3. (A.10)

The above result can be interpreted on the basis of the first law of thermodynamics:
since the process is adiabatic, the increase (A.10) in the internal energy of the system is
equal to the work done on the system in the process. It therefore follows that, in order
to carry out the process, we need to do work by applying forces on the system.
Let F̃a and F̃b denote the forces applied in the process to element A and to element

B, respectively. The work done by the forces in the process is then given by

(F̃a − F̃b) · eidxi. (A.11)
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This work must be equal to (A.10); we obtain, after some manipulation,

{(F̃a − F̃b)− ρ0β(Tb − Ta)ge3} · eidxi = 0. (A.12)

Since the direction of eidxi is arbitrary, we observe that

(F̃a − F̃b) = ρ0β(Tb − Ta)ge3. (A.13)

This result can be accounted for if F̃a and F̃b are given by

F̃a = −ρ0β(Ta − Tr)ge3, F̃b = −ρ0β(Tb − Tr)ge3, (A.14)

where Tr is an arbitrary constant temperature.
We recall here that the above process is quasistatic. Thus the fluid elements must be

stationary throughout the process. This implies that the following forces, which are in
balance with the forces (A.14), must be acting on the fluid elements inherently:

Fa = ρ0β(Ta − Tr)ge3, Fb = ρ0β(Tb − Tr)ge3. (A.15)

Here Fa and Fb denote the forces acting on element A and on element B, respectively.
This conclusion can be generalized as follows: an incompressible fluid element of unit

volume with temperature T is acted on, in a uniform gravitational field, by the force

F = ρ0β(T − Tr)ge3. (A.16)

This is the buoyancy force in the Boussinesq approximation. Note that the arbitrariness
of Tr corresponds to that of the reference temperature in the approximation.
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