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Abstract

This note derives the Boussinesq approximation in a manner consistent with the
conservation law of mass. It is shown that the governing equations of a fluid under
the approximation can be obtained on the basis of the assumption that the fluid is
incompressible, in the sense that the density of the fluid is constant. The equation
of motion, in particular, can be formulated with the help of the conservation law of
energy. The conditions for the approximation to be valid are also discussed.

1. Introduction

The Boussinesq approximation is widely used to describe the motion of a fluid with a
nonuniform temperature distribution. In deriving the approximation, it is traditionally
assumed that the density of the fluid is a linear function only of the temperature of the
fluid (see e.g. Landau & Lifshitz 1987, § 56; Mihaljan 1962). It can be shown, however,
that this assumption violates the conservation law of mass (Maruyama 2014). This is a
fatal defect of the traditional method for deriving the approximation.

Thus, in view of the importance of the approximation, this note introduces a method
to derive the approximation in a manner consistent with the conservation law of mass:
the fluid is assumed to be incompressible in the sense that its density is constant. It is
shown that the need for the buoyancy force in the approximation can be inferred on the
basis of the conservation law of energy. The conditions necessary for the approximation
to be valid (Spiegel & Veronis 1960) are also revised accordingly.

2. Governing equations under the Boussinesq approximation

We consider the motion of a fluid in a uniform gravitational field; it is assumed that
the fluid occupies a fixed domain €2. We set up in the domain a system of rectangular
coordinates (x1,x2,x3) with the zs-axis taken vertically upwards. The unit vectors in



the positive x1-, x9-, and xs-directions are respectively denoted by e, ez, and es. In
the following, Latin indices are consistently used to represent the numbers 1, 2, and 3;
the summation convention is also implied.

2.1. Basic assumptions

First of all, we assume that the fluid is incompressible in the sense that the density p
of the fluid is constant:

p = po. (2.1)
The thermal expansion coefficient 5 of the fluid, however, is assumed not to vanish:
B=v"Yow/dT), # 0, (2.2)

where v = p~! is the specific volume of the fluid; T and p are the temperature and the

pressure of the fluid, respectively. We assume that T' can be expressed in the form
T=Ty+T, (2.3)

where T is a constant reference temperature, and 7’ the small deviation from T;. We
also write p, denoting by p’ the small perturbation pressure, as follows:

p=po+p. (2.4)
Here the hydrostatic pressure pg is defined by
Po = —pogxs3 + constant, (2.5)
in which g denotes the acceleration due to gravity.
2.2. Equation of continuity
Now, let us consider the equation of continuity
p 'Dp/Dt+V -u =0, (2.6)

in which D/Dt denotes the material derivative, and w is the velocity of the fluid. The
substitution of (2.1) into (2.6) yields

V-u=0. (2.7)

This is the equation of continuity under the Boussinesq approximation.



2.3. Equation of motion

Let us next consider the equation of motion: using (2.4), it can be written as

Du 0T
=V Y
p Dt P + 6$j

ei — (p— po)ges, (2.8)

where 7;; are the components of the viscous stress tensor. Substituting (2.1) into (2.8),

we obtain D 9
u Tii
— =-Vp + e, 2.9
po Dt P 833]' ! ( )
This equation, however, must contain an additional term in order to be consistent with
the conservation law of energy; our aim in the following is to demonstrate this fact.

To this end, we first need to consider the total energy of the fluid:

/on (3ul* + gzs +e) dV. (2.10)

Here e denotes the specific internal energy of the fluid. The conservation law of energy
requires that this energy should satisfy the equation

d

— | o (3lul® + g3 +e) dV:/uz‘Tz‘j”de_/q'ndS’ (2.11)
dt Q » by

in which X denotes the boundary of €2, and n the unit outward normal on ¥; u; and n;

are the components of u and n, respectively; q is the heat flux density due to thermal

conduction. This equation states that the total energy of the fluid changes owing to the

work done by the viscous force acting on 3 and owing to the heat transfer across 3.
On the other hand, it is obvious that

d
— [ pogxzdV = 0. (2.12)
dt Jq
Thus the potential energy of the fluid is invariable.
We next proceed to derive, after Maruyama (2014), the equation that describes the

rate of change of the internal energy of the fluid. This equation can be obtained from
the general equation of heat transfer (see Landau & Lifshitz 1987, §49):

Ds ou;

T— — 5.
P Dt T”&acj

~V-gq, (2.13)

where s denotes the specific entropy of the fluid, and the first term on the right-hand
side represents the heating due to viscous dissipation.
Now, regarding s as a function of 7" and p, we obtain

Ds (0s\ DT ds Dp
Dt <8T>p Di " <6p>T Dt (2.14)



Here, as is well known in thermodynamics, (0s/9T'), and (0s/0p)r are given by

@)% @@ e
r), T D) 1 T/,
where ¢, is the specific heat at constant pressure. These coefficients may be evaluated

at T =Ty and p = pg, for T and p deviate only slightly from T and py. We then have,
since v = vg = pal,

Ds ¢y DT Dpg Dp'
-° _ — 2.1
Dt~ T, Dt Oﬁ()(Dt Dt (2.16)
where (2.3) and (2.4) have been used; we have also introduced the notation
cpo = ¢p(To,p0),  Bo = B(To, po). (2.17)
It should be noted that ¢, and By may depend on x3 through pg.
Similarly, when s is regarded as a function of e and v, we get
D 1D D
I e (2.18)
Dt Ty Dt Ty Dt
However, since Dv/Dt = Dp~!/Dt = 0, it follows that
Ds 1 De
—_— == 2.1
Dt _ T, Dt (2.19)
As a consequence, using (2.1), (2.3), (2.16), and (2.19), we have
Ds Ds Ds
T— = pol T —
pT 5y = polopy + pol -
De cp0 DT Dpo  Dp
= po— T E = 2.20
= Py T PO {T Dt OO(Dt+Dt (2.20)

However, since Dpg/Dt = —pogus, (2.20) gives, to the first order of primed variables,

Ds De
= po— + poBoT gus. (2.21)

Ti
Y Dt

Substituting this into (2.13), we obtain

De ou;

PO =T zya — V- q— poBoT gus. (2.22)

The integration of (2.22) over Q2 yields

d Ou;
/poedV /TU Ui dv — /q-ndS/pgﬁoT’gu;ng (2.23)
dt O:BJ » 0

This is the desired equation for the rate of change of the internal energy.



We can now derive the equation describing the rate of change of the kinetic energy of
the fluid by subtracting (2.12) and (2.23) from (2.11):

;i/g Spolul?dV = /EuiTijnde - /ang;td‘/ + /onﬁoT’gu;;dV. (2.24)
We observe from this equation that (2.9) must contain the term
poBoT ges. (2.25)
The force represented by this term is referred to as the buoyancy force. Thus we get
po%? =-Vp' + g;z]] e; + pofoT" ges. (2.26)

This is the equation of motion under the Boussinesq approximation. In (2.26), 7;; are

given, for example, by
81@ an
L= ’ 2.27

in which 7 is the dynamic viscosity. It should be emphasized that the work done by the
buoyancy force corresponds to the conversion between kinetic and internal energy; this
indicates that the origin of the buoyancy force is the pressure gradient force.

Before closing this subsection, it is worth noting that, as shown in the appendix, the
need for the buoyancy force can also be inferred from a simple thought experiment.

2.4. Temperature equation

From (2.16) and (2.19), we have

De DT’ Dpy Dy
— = — — BoTo | —=— . 2.28
D ~ PPy B00<Dt+Dt (228)
The substitution of (2.28) into (2.22) yields the following temperature equation:
DT’ ou; Dpy Dy
e A v To (222 + 22} — poBoT qus v - 2.29
POCPO ) = Tij oz, V-q+ {ﬁo 0 < br T Di poBoT" gus (2.29)
Here q is given, for example, by Fourier’s law:
q=—kvT, (2.30)

where k denotes the thermal conductivity. This is the temperature equation under the
Boussinesq approximation consistent with the conservation law of energy.

3. Summary and discussion

The Boussinesq approximation has been reconstructed in a manner consistent with
the conservation law of mass. It has been shown that the governing equations of a fluid
under the approximation can be obtained on the basis of the following assumption: the
fluid is incompressible in the sense that its density is constant. The equation of motion
can in particular be formulated with the help of the conservation law of energy.



3.1. Applicability of the Boussinesq approximation

We are now in a position to discuss what conditions are necessary for the Boussinesq
approximation to be applicable to a specific motion of a compressible fluid. We assume
that the motion possesses the following characteristic scales: a time scale 7, a velocity
scale U, and a length scale L. Let also the scale of the temperature difference of the
fluid be denoted by AT’. As in §2, Ty denotes a constant reference temperature; py in
the following should be interpreted as a constant reference density.

We first recall (2.3). This expression states that the temperature of the fluid varies
only slightly from Tj. Hence AT’ must be very small compared with Tp:

AT' Ty < 1. (3.1)

In (2.4), on the other hand, the variation of the perturbation pressure p’ is taken to
be very small compared with that of the hydrostatic pressure py. Thus we must have

IVP'|/IVpo| < 1. (3.2)
Here, in view of (2.5), |Vpyg| is given by
[Vpo| = pog. (3.3)
As for |Vp/|, the following inequality can be obtained from (2.8):
VD] < lp(w - V)ul + [p(0u/0t)| + [(07i;/0x;)ei| + [(p — po)ges]. (3-4)

It therefore follows that, if each of the terms on the right-hand side of (3.4) is very small
compared with pog, (3.2) is satisfied. In the following, we examine each term in turn.
We can estimate the first term on the right-hand side of (3.4) as follows:

[p(w - V)ul = O(poU?/L). (3.5)
This term, therefore, is very small compared with pgg when
U/(gL)"/? < 1. (3.6)
The second term can also be estimated as
p(0u/0t)] = O(poU/7). (3.7)
Hence this term is very small compared with ppg when, together with (3.6),
(L/m)/(gL)"* <1 (3:8)
applies. Regarding the third term, we observe that, if (2.27) may be employed,

(9735 /0xj)es] = O(U/L?). (3.9)



Then this term also is very small compared with ppg when (3.6) and
v/{(gL)'?L} < 1 (3.10)

are satisfied. Here v = n/py is the kinematic viscosity.
In order to estimate the last term of (3.4), we note here the thermodynamic relation

dp = (y/a*)dp — pBdT, (3.11)

where v is the ratio of specific heats, and a the speed of sound. This allows us to write

0 = pol = O(vAp/a®) + O(pofoAT). (3.12)

Here Ap denotes the scale of the pressure variation. Now, let the vertical extent of the
fluid be denoted by H. Then it is reasonable to put

Ap = pogH. (3.13)
In consequence, the last term of (3.4) can be estimated as follows:
(0 — po)ges| = O(ypog® H/a®) + O(pofoAT'g). (3.14)
Accordingly, since v = O(1), this term is very small compared with ppg when
(gH)'"?Ja <1, BAT < 1. (3.15)

It is interesting to note that, for an ideal gas, the second condition in (3.15) is identical
to (3.1). This is because By = T, ! for an ideal gas.

The basic assumption (2.1) is also justifiable under (3.15); as is apparent from (3.12)
and (3.13), |[p — po|/po < 1 under (3.15). The remaining assumption (2.2) is commonly
satisfied. Thus the conditions for the Boussinesq approximation to be applicable to the
motion have all been formulated: (3.1), (3.6), (3.8), (3.10), and (3.15).

3.2. Further approximations to the temperature equation

Although the temperature equation (2.29) is consistent with the conservation law of
energy, it is somewhat hard to deal with. Thus, for practical purposes, it is desirable to
introduce further approximations to the equation.

Let us consider again the fluid motion in § 3.1. We can approximate the terms in the
braces on the right-hand side of (2.29), ignoring terms containing primed variables, as

Dpy = Dy , Dpy
{BOTO (Dt + D)~ pofBoT gug ¢ ~ 50T0ﬁ = —poBoTogus. (3.16)

The term representing the heating due to viscous dissipation, with 7;; given by (2.27),
can also be ignored in comparison with the term poBoTpgus when the condition

(1/60T0) |v/{(91)"L}| <1 (3.17)



holds in addition to (3.6). In this case, (2.29) takes the form

/

Pocpo% = =V - q — poBoTogus. (3.18)
However, the last term of (3.18) can further be ignored when
ToH/AT < 1, (3.19)
where I'g = BoTvg/cpo is the adiabatic lapse rate. We then obtain

DT’
POCPO = -V -gq. (3.20)

This is in fact the temperature equation in the original Boussinesq approximation.

3.3. Potential temperature under the Boussinesq approximation

When the temperature equation is approximated by (3.18), we can employ, in place
of T', the potential temperature 6 defined by

3
0=00+T, 6y="T+ / Lo(xh)dah. (3.21)
Ca

Here the integral is taken from an arbitrary reference level 2 = (,. In terms of 6, the
temperature equation (3.18) is written as

Do

o ="Va (3.22)

POCp0

The equation of motion (2.26) can also be written as

Du 074
— = -Vp + e, 0 3.23
POy P+ oz, e; + poSofges, (3.23)

where p’ is the modified perturbation pressure defied by
3
B=f g [ Aol et (3.24)

Comparing (3.22) with (3.20), and (3.23) with (2.26), we observe that 6 plays formally
the same role as T” in the original Boussinesq approximation.

However, it is also important to pay attention to the difference between 6 and T”. Let
us consider, as an example, Fourier’s law (2.30). It is expressed in terms of 6 as follows:

qg = —kVO+ kl'ges. (3.25)

Hence the heat flux density g, which is proportional to V7", is not proportional to V6.



This fact becomes significant, for example, when an adiabatic condition is imposed on
a fixed boundary z3 = (;. Expressing the condition in terms of 7", we have

(0T ) 0x3)|3y=c, = 0. (3.26)
On the other hand, the same condition requires that

((9(9/(9%3)‘953:@ = FO(Cb)- (3.27)

It therefore follows that # must satisfy a condition formally different from that for 7".

As is evident from the above discussion, 6 is not a mere substitute for 7”. This is not
surprising considering the following fact: potential temperature is a measure of specific
entropy (see e.g. Gill 1982); it is, despite its name, a quantity essentially different from
temperature.

Appendix. Another derivation of the buoyancy force

We consider the same physical situation as that in §2, but the fluid is now assumed
to be at rest. Let us first take a fluid element of unit volume in the fluid: it is referred
to as element A, and its temperature is T,. We next consider another fluid element of
unit volume referred to as element B: its position relative to element A is e;dx;, and its
temperature is 7. The fluid elements have the same mass pg, and T, and T} are not so
different. Our aim in this appendix is to analyze the quasistatic process of adiabatically
interchanging the positions of the fluid elements in order to derive the buoyancy force
in the Boussinesq approximation.

Let us focus attention on element A. When its position is adiabatically interchanged
with that of element B, the specific entropy s remains unchanged. Hence the change in
temperature d1; of element A can be calculated from

oT
T, = = " Al
I <0p>sdp (A1)

Here dp, denotes the change in pressure experienced by element A when it is displaced
vertically by dxg; since the pressure is hydrostatic, dp, is given by

dpa = —pogdxs. (A.2)

We can also write, using (2.15), the coefficient on the right-hand side of (A.1) as

@), @),/ ), =" 9

where § and ¢, are regarded as constant. Thus, from (A.1), (A.2), and (A.3), we have

_ BTug

Cp

AT, =

d.iL'3. (A4)



As a result, the temperature of element A after the process is found to be

_ BTug

Cp

Ta d$3. (A5)

Similarly, the temperature of element B after the process can be obtained as follows:

BTy

Cp

Ty + ds. (A.6)

On the basis of these results, we wish to analyze the change in the energy of the system
consisting of the two fluid elements.

The kinetic energy of the system remains zero in the above quasistatic process since
both the fluid elements are stationary throughout the process. The potential energy of
the system is also unchanged: the potential energy of element A increases by pogdxs,
but that of element B decreases by the same amount. However, as explained below, the
internal energy of the system changes through the process.

Let us consider again element A after the above quasistatic process. In view of (A.5),
its temperature becomes T} if the following amount of heat is removed:

Ty
Py <Ta 0 - 9 dm3> . (A7)
P

Similarly, the temperature of element B becomes T, if we remove an amount of heat

T
P0oCp <Tb — T, + b bgd.%’g) . (AS)

Cp
Thus, removing from the two fluid elements after the process an amount of heat

BTag

Cp

T
PoCp <Ta - Ty — d$3> + poCp (Tb —To+ Plig d$3> ) (A.9)

Cp

we can restore the initial state of the process: the position of a fluid element of unit
volume with T = T} is e;dx; relative to one with T' = T,. This proves that the internal
energy of the system of the two fluid elements increases through the process by

poB(Ty — Ta)gdxs. (A.10)

The above result can be interpreted on the basis of the first law of thermodynamics:
since the process is adiabatic, the increase (A.10) in the internal energy of the system is
equal to the work done on the system in the process. It therefore follows that, in order
to carry out the process, we need to do work by applying forces on the system.

Let F, and F}, denote the forces applied in the process to element A and to element
B, respectively. The work done by the forces in the process is then given by

(Fa - Fb) . ezdxz (All)

10



This work must be equal to (A.10); we obtain, after some manipulation,
{(F, — ) — poB(Ty, — Tu)ges} - e;dx; = 0. (A.12)
Since the direction of e;dx; is arbitrary, we observe that
(Fy, — Fy) = poB(T, — Ta)ges. (A.13)

This result can be accounted for if F, and F} are given by

F, = —poB(T, — T))ges, Fy=—poB(Ty — T})ges, (A.14)

where T, is an arbitrary constant temperature.

We recall here that the above process is quasistatic. Thus the fluid elements must be
stationary throughout the process. This implies that the following forces, which are in
balance with the forces (A.14), must be acting on the fluid elements inherently:

F, = poB(Ta —T;)ges, Fy = poB(Ty —T;)ges. (A.15)

Here F, and F} denote the forces acting on element A and on element B, respectively.
This conclusion can be generalized as follows: an incompressible fluid element of unit
volume with temperature T is acted on, in a uniform gravitational field, by the force

F = poB(T —T;)ges. (A.16)

This is the buoyancy force in the Boussinesq approximation. Note that the arbitrariness
of T;. corresponds to that of the reference temperature in the approximation.
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