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Abstract

This paper extends a variant of the anelastic approximation to a two-component
fluid. The energetics and the applicability of this extended approximation are also
discussed, together with the relation to the Boussinesq approximation extended to
a two-component fluid.

1. Introduction

Ogura & Phillips (1962) devised an approximation called the anelastic approximation
in order to study the motion under gravity of a deep layer of ideal gas with an isentropic
basic state. Maruyama (2021a) reconstructed the approximation in such a manner that
it can be applied to any kind of fluid with an isentropic basic state.
Maruyama (2021b) further introduced a variant of the anelastic approximation which

deals with a fluid having an isothermal basic state. As a limiting case of this isothermal
anelastic approximation, the well-known Boussinesq approximation can be obtained
The objective of this paper is to extend the isothermal anelastic approximation to a

two-component fluid: the energetics of the extended approximation and the conditions
for its applicability are also fully clarified; its relation to the Boussinesq approximation
extended to a two-component fluid (Maruyama 2019) is discussed as well.

2. Extended isothermal anelastic approximation

We consider the motion of an inviscid fluid consisting of two components, A and B,
in a uniform gravitational field. The concentration of component A is denoted by c; the
mass of A in a unit volume of the fluid is given by ρc, with ρ being the density of the
fluid. The fluid is contained in a fixed finite domain Ω, and, in this domain, the z-axis
is taken vertically upwards. We denote by k the unit vector in the positive z-direction.
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2.1. Equation of motion

We first write down the equation of motion for the fluid as follows:

Du

Dt
= −∇p/ρ− gk, (2.1)

where D/Dt stands for the material derivative, and u denotes the velocity of the fluid;
p is the pressure of the fluid, and g the acceleration due to gravity.

Let φ denote the specific Gibbs free energy of the fluid: it satisfies the relation

dφ = −sdT + vdp+ µdc, (2.2)

in which s and T are the specific entropy and the temperature of the fluid, respectively;
v = 1/ρ denotes the specific volume of the fluid, and µ is the chemical potential of the
fluid (see Landau & Lifshitz 1987, § 58). In the following, all thermodynamic quantities
are regarded as known functions of φ, T and c.
Using (2.2), we can rewrite ∇p/ρ as follows:

∇p/ρ = ∇φ+ s∇T − µ∇c. (2.3)

The substitution of (2.3) into the equation of motion (2.1) yields

Du

Dt
= −∇φ− s∇T + µ∇c− gk. (2.4)

Now, let us decompose φ, T , and c as follows:

φ = φ0 + φ′, T = T0 + T ′, c = c0 + c′. (2.5)

Here φ0, T0, and c0 are defined by

φ0 = −gz + α1, T0 = α2, c0 = α3, (2.6)

with α1, α2, and α3 being constants. Then (2.4) takes the following form:

Du

Dt
= −∇φ′ − s∇T ′ + µ∇c′. (2.7)

Under the decomposition (2.5), s and µ can also be decomposed as follows:

s = s0 + s′, µ = µ0 + µ′, (2.8)

where s0 and µ0 are given by

s0 = s(φ0, T0, c0), µ0 = µ(φ0, T0, c0). (2.9)

We introduce here the following assumptions:

|s′/s0| ≪ 1, |µ′/µ0| ≪ 1. (2.10)
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Then the equation of motion (2.7) may be approximated as

Du

Dt
= −∇φ′ − s0∇T ′ + µ0∇c′. (2.11)

Since s0∇T ′ = ∇(s0T
′)− T ′∇s0 and µ0∇c′ = ∇(µ0c

′)− c′∇µ0, we have

Du

Dt
= −∇(φ′ + s0T

′ − µ0c
′) + T ′∇s0 − c′∇µ0. (2.12)

This is the equation of motion under the extended isothermal anelastic approximation.
The second term on the right-hand side of (2.12) represents the buoyancy force that

arises from changes in temperature. Regarded as a function of φ, T , and c, s satisfies

(∂s/∂φ)T,c = −β,

(∂s/∂T )φ,c = T/cp − βs,

(∂s/∂c)φ,T = βµ− (∂µ/∂T )p,c,

(2.13)

where β = v−1(∂v/∂T )p,c is the thermal expansion coefficient, and cp the specific heat
at constant pressure. Hence, in view of (2.6) and (2.9), we can write

∇s0 = (∂s/∂φ)T,c|(φ0,T0,c0)∇φ0 = β0gk, (2.14)

in which the following notation has been introduced:

β0 = β(φ0, T0, c0). (2.15)

The second term on the right-hand side of (2.12) can therefore be rewritten as

T ′∇s0 = β0T
′gk. (2.16)

The third term on the right-hand side of (2.12) represents the buoyancy force due to
changes in concentration. The chemical potential µ in this term satisfies the relations

(∂µ/∂φ)T,c = ρ(∂µ/∂p)T,c = −βc,

(∂µ/∂T )φ,c = (∂µ/∂T )p,c + ρs(∂µ/∂p)T,c,

(∂µ/∂c)φ,T = (∂µ/∂c)T,p − ρµ(∂µ/∂p)T,c,

(2.17)

where βc = ρ−1(∂ρ/∂c)T,p. Thus ∇µ0 can be rewritten as

∇µ0 = (∂µ/∂φ)T,c|(h0,s0,c0)∇φ0 = βc0gk, (2.18)

where βc0 = βc(φ0, T0, c0). As a result, we obtain the following expression:

−c′∇µ0 = −βc0c
′gk. (2.19)
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2.2. Equation of continuity

Under the decomposition (2.5), the density ρ of the fluid can be written as

ρ = ρ0 + ρ′, (2.20)

where ρ0 is defined by
ρ0 = ρ(φ0, T0, c0). (2.21)

We introduce here the following assumption:

|ρ′/ρ0| ≪ 1. (2.22)

On this assumption, ρ may be approximated as follows:

ρ = ρ0. (2.23)

Substituting (2.23) into the equation of continuity ∂ρ/∂t+∇ · (ρu) = 0, we get

∇ · (ρ0u) = 0. (2.24)

This is the equation of continuity under the extended approximation.

2.3. Concentration equation

In the absence of diffusion, the equation for the rate of change of the concentration c
of component A is given by (see Landau & Lifshitz 1987, § 58)

ρ
Dc

Dt
= 0. (2.25)

Considering (2.5) and (2.23), we can approximate this equation as follows:

ρ0
Dc′

Dt
= 0. (2.26)

2.4. General equation of heat transfer

The general equation of heat transfer (see Landau & Lifshitz 1987, § 58) takes, when
the conduction of heat is neglected, the following form:

ρT
Ds

Dt
+ ρµ

Dc

Dt
= 0. (2.27)

To the first order of primed variables, this equation can be written as

ρ0T0u · ∇s0 + ρ0T0
Ds′

Dt
+ ρ0T

′u · ∇s0 + ρ0µ0
Dc′

Dt
= 0, (2.28)

where (2.23) has been used. Using (2.13), we can further rewrite s′ in (2.28) as follows:

s′ = (∂s/∂φ)T,c|(φ0,T0,c0)φ
′ + (∂s/∂T )φ,c|(φ0,T0,c0)T

′ + (∂s/∂c)φ,T |(φ0,T0,c0)c
′

= −β0φ
′ + (cp0/T0 − β0s0)T

′ +
{
β0µ0 − (∂µ/∂T )p,c|(φ0,T0,c0)

}
c′. (2.29)

Here the following notation has been introduced:

cp0 = cp(φ0, T0, c0). (2.30)
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2.5. Alternative forms of the equation of motion

We have thus fully formulated the isothermal anelastic approximation extended to a
two-component fluid. For later reference, however, it is useful to rewrite the equation of
motion (2.12) in somewhat different forms.
We first note that, under the decomposition (2.5), the pressure p of the fluid can also

be decomposed as follows:
p = p0 + p′, (2.31)

where p0 is defined by
p0 = p(φ0, T0, c0). (2.32)

On the other hand, the following thermodynamic relations are obtained from (2.2):

(∂p/∂φ)T,c = ρ, (∂p/∂T )φ,c = ρs, (∂p/∂c)φ,T = −ρµ. (2.33)

Hence p′ can be expressed, to the first order of φ′, T ′, and c′, as follows:

p′ = (∂p/∂φ)T,c|(φ0,T0,c0)φ
′ + (∂p/∂T )φ,c|(φ0,T0,c0)T

′ + (∂p/∂c)φ,T |(φ0,T0,c0)c
′

= ρ0φ
′ + ρ0s0T

′ − ρ0µ0c
′. (2.34)

This expression enables us to rewrite (2.12) in the following form:

Du

Dt
= −∇(p′/ρ0) + T ′∇s0 − c′∇µ0. (2.35)

The first term on the right-hand side, however, can further be rewritten as

−∇(p′/ρ0) = −∇p′/ρ0 + (p′/ρ0)(∇ρ0/ρ0). (2.36)

The substitution of (2.36) into (2.35) yields

Du

Dt
= −∇p′/ρ0 + (p′/ρ0)(∇ρ0/ρ0) + T ′∇s0 − c′∇µ0. (2.37)

Moreover, since ρ0 is defined by (2.21), we can write

∇ρ0/ρ0 = (∂ρ/∂φ)T,c|(φ0,T0,c0)∇φ0/ρ0 = −(∂ρ/∂φ)T,c|(φ0,T0,c0)(g/ρ0)k. (2.38)

Thus, in view of (2.34), the following expression for (p′/ρ0)(∇ρ0/ρ0) is obtained:

(p′/ρ0)(∇ρ0/ρ0) = −(φ′ + s0T
′ − µ0c

′)(∂ρ/∂φ)T,c|(φ0,T0,c0)(g/ρ0)k

= −
{
(∂ρ/∂φ)T,c|(φ0,T0,c0)φ

′

+ s0(∂ρ/∂φ)T,c|(φ0,T0,c0)T
′

−µ0(∂ρ/∂φ)T,c|(φ0,T0,c0)c
′} (g/ρ0)k. (2.39)

The terms T ′∇s0 and −c′∇µ0 in (2.37) can also be expressed as follows:

T ′∇s0 = T ′(∂s/∂φ)T,c|(φ0,T0,c0)∇φ0 = −ρ0(∂s/∂φ)T,c|(φ0,T0,c0)T
′(g/ρ0)k,

−c′∇µ0 = −c′(∂µ/∂φ)T,c|(φ0,T0,c0)∇φ0 = ρ0(∂µ/∂φ)T,c|(φ0,T0,c0)c
′(g/ρ0)k.

(2.40)
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Adding these expressions to (2.39), we get

(p′/ρ0)(∇ρ0/ρ0) + T ′∇s0 − c′∇µ0

= −
[
(∂ρ/∂φ)T,c|(φ0,T0,c0)φ

′

+ {∂(ρs)/∂φ}T,c|(φ0,T0,c0)T
′

−{∂(ρµ)/∂φ}T,c|(φ0,T0,c0)c
′] (g/ρ0)k. (2.41)

From (2.33), however, we observe that the following thermodynamic relations hold:

{∂(ρs)/∂φ}T,c = (∂ρ/∂T )φ,c, −{∂(ρµ)/∂φ}T,c = (∂ρ/∂c)φ,T . (2.42)

These relations enable us to rewrite (2.41) as follows:

(p′/ρ0)(∇ρ0/ρ0) + T ′∇s0 − c′∇µ0

= −
{
(∂ρ/∂φ)T,c|(φ0,T0,c0)φ

′

+ (∂ρ/∂T )φ,c|(φ0,T0,c0)T
′

+(∂ρ/∂c)φ,T |(φ0,T0,c0)c
′} (g/ρ0)k. (2.43)

On the other hand, ρ′ in (2.20) is, to the first order of φ′, T ′, and c′, given by

ρ′ = (∂ρ/∂φ)T,c|(φ0,T0,c0)φ
′ + (∂ρ/∂T )φ,c|(φ0,T0,c0)T

′ + (∂ρ/∂c)φ,T |(φ0,T0,c0)c
′. (2.44)

We see, therefore, that the equation of motion (2.12) can be expressed in the form

Du

Dt
= −∇p′/ρ0 − (ρ′g/ρ0)k. (2.45)

However, it must be emphasized that, in spite of this result, the fluid density under the
present approximation is given by ρ0, not by ρ0 + ρ′.

2.6. Energetics of the extended approximation

Let us next proceed to study, under the extended isothermal anelastic approximation,
the energy balance of the fluid. We first consider the internal energy of the fluid.
Let e denote the specific internal energy of the fluid. We then have the relation

e = φ− p/ρ+ Ts. (2.46)

Accordingly, using (2.5), (2.8), (2.23), and (2.31), we obtain, to the first order of primed
variables, the following expression for e:

e = (φ0 − p0/ρ0 + T0s0) + (φ′ − p′/ρ0 + T0s
′ + s0T

′). (2.47)

Considering (2.34), however, we can further rewrite e in the following form:

e = (φ0 − p0/ρ0 + T0s0) + T0s
′ + µ0c

′. (2.48)
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Taking the material derivative of (2.48), and multiplying the result by ρ0, we get

ρ0
De

Dt
= ρ0u · ∇(φ0 − p0/ρ0) + ρ0T0u · ∇s0 + ρ0T0

Ds′

Dt
+ ρ0c

′u · ∇µ0 + ρ0µ0
Dc′

Dt
. (2.49)

This equation, by virtue of (2.24) and (2.28), reduces to

ρ0
De

Dt
= ∇ · {ρ0(φ0 − p0/ρ0)u} − ρ0T

′u · ∇s0 + ρ0c
′u · ∇µ0. (2.50)

However, since ρ0De/Dt = ρ0∂e/∂t+ ρ0u · ∇e = ∂(ρ0e)/∂t+∇ · (ρ0eu), we have

∂

∂t
(ρ0e) +∇ · {ρ0(e− φ0 + p0/ρ0)u} = −ρ0T

′u · ∇s0 + ρ0c
′u · ∇µ0. (2.51)

Furthermore, in view of (2.48), this equation can be put into the following form:

∂

∂t
(ρ0e) +∇ ·

[
ρ0{T0(s0 + s′) + µ0c

′}u
]
= −ρ0T

′u · ∇s0 + ρ0c
′u · ∇µ0. (2.52)

Integrating (2.52) over the domain Ω containing the fluid, we obtain

d

dt

∫
Ω
ρ0e dV = −

∫
Ω

(
ρ0T

′u · ∇s0 − ρ0c
′u · ∇µ0

)
dV, (2.53)

where it has been assumed that the normal component of u vanishes on the boundary
of Ω. This is the equation for the rate of change of the internal energy of the fluid.
The potential energy of the fluid, on the other hand, is invariable:

d

dt

∫
Ω
ρ0gz dV = 0. (2.54)

This is a logical consequence of the approximation (2.23).
The equation representing the rate of change of the kinetic energy of the fluid can be

derived from (2.35): taking the inner product of (2.35) with ρ0u, we get

∂

∂t
(12ρ0|u|

2) +∇ ·
{
ρ0(

1
2 |u|

2 + p′/ρ0)u
}
= ρ0T

′u · ∇s0 − ρ0c
′u · ∇µ0; (2.55)

integrating (2.55) over the domain Ω, on the assumption that the normal component of
u vanishes on the boundary of Ω, we obtain

d

dt

∫
Ω

1
2ρ0|u|

2dV =

∫
Ω

(
ρ0T

′u · ∇s0 − ρ0c
′u · ∇µ0

)
dV. (2.56)

Maruyama (2021b) demonstrated that, under the isothermal anelastic approximation,
the work done by the buoyancy force due to changes in temperature corresponds to the
conversion between kinetic and internal energy. We see that this is also the case under
the present extended approximation, comparing (2.56) with (2.53). Furthermore, it can
be seen from the comparison of (2.56) with (2.53) that the work done by the buoyancy
force due to changes in concentration also corresponds to the same energy conversion.
Finally, adding (2.53), (2.54), and (2.56), we have

d

dt

∫
Ω
ρ0

(
1
2 |u|

2 + gz + e
)
dV = 0. (2.57)

This equation shows that the total energy of the fluid is conserved. Hence the extended
isothermal anelastic approximation is consistent with the conservation law of energy.
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2.7. Applicability of the extended approximation

The present approximation was formulated on the assumptions (2.10) and (2.22). In
the following, we examine under what conditions these assumptions are justifiable. We
first focus attention on the assumption (2.22).
When ρ is regarded as a function of φ, T , and c, the following relations hold:

(∂ρ/∂φ)T,c = ρ(γ/a2),

(∂ρ/∂T )φ,c = ρ
{
s(γ/a2)− β

}
,

(∂ρ/∂c)φ,T = −ρ
{
ρ(∂µ/∂p)T,c + µ(γ/a2)

}
,

(2.58)

where γ denotes the ratio of specific heats, and a the speed of sound. Substituting these
relations into (2.44), we obtain

ρ′ = ρ0(γ0/a
2
0)φ

′ − ρ0
{
s0(γ0/a

2
0)− β0

}
T ′

− ρ0
{
ρ0(∂µ/∂p)T,c|(φ0,T0,c0) + µ0(γ0/a

2
0)
}
c′,

(2.59)

in which γ0 and a0 are defined by

γ0 = γ(φ0, T0, c0), a0 = a(φ0, T0, c0). (2.60)

Now, let the characteristic scales of φ′, T ′, and c′ be respectively denoted by ∆φ′, ∆T ′,
and ∆c′. Then, we can find the following estimate for |ρ′/ρ0|:∣∣ρ′/ρ0∣∣ = O

{
γ0(gH/a20)(∆φ′/gH)

}
+O

{
γ0(gH/a20)(s0∆T ′/gH)

}
+O(β0∆T ′)

+O
{
(ρ0gH/µ0)(∂µ/∂p)T,c|(φ0,T0,c0)(µ0∆c′/gH)

}
+O

{
γ0(gH/a20)(µ0∆c′/gH)

}
.

(2.61)

Here H stands for the vertical extent of the domain Ω containing the fluid: we assume
that H satisfies the conditions

(gH)1/2/a0 ≤ O(1),
∣∣(ρ0gH/µ0)(∂µ/∂p)T,c|(φ0,T0,c0)

∣∣ ≤ O(1). (2.62)

It then follows from (2.61) that, since γ0 = O(1), (2.22) holds under the conditions

∆φ′/gH ≪ 1, (2.63)

s0∆T ′/gH ≪ 1, (2.64)

β0∆T ′ ≪ 1, (2.65)

|µ0|∆c′/gH ≪ 1. (2.66)

We can also find from (2.29) the following estimate for |s′/s0|:

|s′/s0| = O{(cp0/s0)(Γ0H/∆T ′)(∆T ′/T0)(∆φ′/gH)}
+O{(cp0/s0)(∆T ′/T0)}
+O(β0∆T ′)

+O{(cp0/s0)(Γ0H/∆T ′)(∆T ′/T0)(µ0∆c′/gH)}
+O{(cp0/s0)(T0/µ0)(∂µ/∂T )p,c|(φ0,T0,c0)(µ0∆c′/cp0T0)},

(2.67)
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where Γ0 = β0T0g/cp0 is the adiabatic lapse rate. As pointed out by Maruyama (2021b),
it is reasonable to expect that the following conditions are met:

cp0/s0 ≤ O(1), Γ0H/∆T ′ ≤ O(1). (2.68)

We also assume that ∣∣(T0/µ0)(∂µ/∂T )p,c|(φ0,T0,c0)

∣∣ ≤ O(1). (2.69)

Then the first assumption of (2.10) is justifiable when the conditions

∆T ′/T0 ≪ 1, (2.70)

|µ0|∆c′/cp0T0 ≪ 1 (2.71)

hold together with (2.63), (2.65), and (2.66).
On the other hand, using (2.17), we can express µ′ as follows:

µ′ = ρ0(∂µ/∂p)T,c|(φ0,T0,c0)φ
′

+ {(∂µ/∂T )p,c|(φ0,T0,c0) + ρ0s0(∂µ/∂p)T,c|(φ0,T0,c0)}T
′

+ {(∂µ/∂c)T,p|(φ0,T0,c0) − ρ0µ0(∂µ/∂p)T,c|(φ0,T0,c0)}c
′.

(2.72)

This expression yields the following estimate for |µ′/µ0|:

|µ′/µ0| = O{(ρ0gH/µ0)(∂µ/∂p)T,c|(φ0,T0,c0)(∆φ′/gH)}
+O{(T0/µ0)(∂µ/∂T )p,c|(φ0,T0,c0)(∆T ′/T0)}

+O{(ρ0gH/µ0)(∂µ/∂p)T,c|(φ0,T0,c0)(s0∆T ′/gH)}
+O{(gHµ−1

0 /µ0)(∂µ/∂c)T,p|(φ0,T0,c0)(µ0∆c′/gH)}
+O{(ρ0gH/µ0)(∂µ/∂p)T,c|(φ0,T0,c0)(µ0∆c′/gH)}.

(2.73)

Accordingly, the second assumption of (2.10) is justifiable when the condition∣∣(gHµ−1
0 /µ0)(∂µ/∂c)T,p|(φ0,T0,c0)

∣∣ ≤ O(1) (2.74)

is fulfilled in addition to the above conditions.
It should be noted here, however, that the following inequality follows from (2.7):

|∇φ′| ≤ |∂u/∂t|+ |(u · ∇)u|+ |s∇T ′|+ |µ∇c′|. (2.75)

Let L denote the length scale characteristic of the motion of the fluid; we then have

|∇φ′| = O(∆φ′/L), |∇T ′| = O(∆T ′/L), |∇c′| = O(∆c′/L). (2.76)

Moreover, if the velocity scale characteristic of the motion is denoted by U , we get

|∂u/∂t| = O(U/τ), |(u · ∇)u| = O(U2/L), (2.77)
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in which τ stands for the time scale characteristic of the motion. Now, suppose that α1,
α2, and α3 in (2.6) can be chosen so that the following conditions are met:

s/s0 ≤ O(1), |µ/µ0| ≤ O(1). (2.78)

Then it follows from (2.75), (2.76), and (2.77) that, when the conditions

U/(gH)1/2 ≪ 1, (L/τ)/(gH)1/2 ≪ 1 (2.79)

hold together with (2.64) and (2.66), the condition (2.63) is satisfied automatically.
It can also be shown that (2.65) is redundant (Maruyama 2021b). Thus the extended

isothermal anelastic approximation is applicable under the following conditions: (2.62),
(2.64), (2.66), (2.68), (2.69), (2.70), (2.71), (2.74), (2.78), and (2.79).

Finally, note that the present approximation is inapplicable to ideal gases. This is, as
shown by Maruyama (2021b), because of the condition (2.64).

3. Summary and Discussion

The isothermal anelastic approximation, a variant of the anelastic approximation, has
been extended to a two-component fluid. The energetics of the extended approximation
and the conditions under which it is applicable have also been elucidated.

3.1. Relation to the Boussinesq approximation extended to a
two-component fluid

The Boussinesq approximation is often used to study the motion of a fluid thermally
stratified in a uniform gravitational field. This approximation is obtainable as a limiting
case of the isothermal anelastic approximation (Maruyama 2021b).

Maruyama (2019) extended, in a manner consistent with the conservation law of mass,
the Boussinesq approximation to a two-component fluid. It might be expected that this
extended Boussinesq approximation is obtainable from the present extended isothermal
anelastic approximation. As explained below, however, this expectation is wrong.

In § 2.6, we have shown that, under the present approximation, the work done by the
buoyancy force due to changes in concentration corresponds to the conversion between
kinetic and internal energy. In contrast, Maruyama (2019) showed that the work under
the extended Boussinesq approximation corresponds to the conversion between kinetic
and potential energy. As a result of this contrast, we arrive at the following conclusion:
the extended Boussinesq approximation cannot be reproduced as a limiting case of the
present extended isothermal anelastic approximation.
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