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Abstract— The present paper proposes the control algorithm
of direction of the end-point position error caused by the distur-
bance. Taking consideration of it, the effect of the disturbance
on the end-point position is maximized in the direction of the
singular vector corresponding to the maximum singular value.
Therefore, if we can control the direction of the singular vector,
we will be able to control the direction of the positional error of
the end-point position steered by the disturbance. We propose
the control algorithm of the direction of the positional error
and the effectiveness by applying the algorithm to the hitting
motion by the robotic arm.

I. INTRODUCTION

In general, we cannot obtain nominal models of real
robotic systems, because the real robotic systems include
various uncertainty. One of the uncertainty is noise and
disturbance which are excluded from the nominal models.
For example, sensor noise and quantization error of the
angular velocity are applied to the robot as disturbance. To
constrain the disturbance, many researchers focus on the
controller design such as the robust control [2], [7]. The
controller design is very complicated.

In the meanwhile, our concept is effectively making use
of the robot dynamics to accomplish the task robustly even
though the controller is very simple. Therefore we focus
on the motion planning rather than the controller design.
If we can obtain the robust trajectory independently of the
control input, the controller can be simplified. Our approach
is to plan the motion which reduces the influence of the
disturbance on the task by utilizing the robot dynamics ag-
gressively. To our knowledge, while the motion plannings for
robotic arms have been proposed [1], [9], [8], none of these
schemes have been addressed to constrain the disturbance.

We have revealed that our approach is effective to reduce
the magnitude of the end-point positional error at the final
point of the trajectory [10]. On the other hand, the present
paper focuses on the generation direction of the end-point
positional error. In several tasks, the generation direction of
the positional error is more important than the magnitude of
it. One of such task is the hitting motion by the robotic arm
as shown in Fig. 1. If the end-point is deviated vertically
to the desired trajectory by disturbance, the robot fails to
hit the target as described in Fig. 1(a). If the direction of
the positional error can be controlled to be tangential to the
desired trajectory as shown in Fig. 1(b), the robotic arm can
hit the target even though the disturbance is applied. For
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Fig. 1. Application examples of the control of direction of the end-point
position error caused by disturbance

the hitting motion, there is no need to force the robotic arm
to reduce the magnitude of the positional error. If only the
generation direction of the positional error can be controlled,
we will be able to improve the robustness of the hitting
motion to the disturbance. Therefore the present paper deals
with only the generation direction of the end-point positional
error and proposes the technique to control the generation
direction to the tangential direction of the target path.

The robotic arm can be regarded as the control system
of which the input and the output are the joint torque and
the end-point position, respectively. From the linear system
theory, the magnitudes of the singular values of the output
controllability matrix represent the strengths of the effects
of input on output [3], [4]. Therefore, the singular vector
corresponding to the maximum singular value indicates the
direction in which the effect of the joint torque (input) on
the position (output) of the end-effector is maximized. This
implies that the singular vector also indicate the direction
in which the effect of the disturbance have the maximum
intensity with the end-point position. Thus if we can plan
the robot motion to control appropriately the direction of
the singular vector, we will be able to plan the generation
direction of the end-point positional error caused by the
disturbance.

The direction of the singular vector is determined from
only the robot dynamics and thus independent from the con-
trol input. Therefore we can control the generation direction
of the end-point positional error with the simple controller.

To verify the validity of our approach, we conduct two



simulations and one experiment. Section III shows the end-
point position error converges onto near the singular vector
of the output controllability matrix. Section IV proposes the
motion planning which enabled the singular vector to point
toward the tangential direction of the trajectory. Section V
describes the practical application example of the proposed
control algorithm. This section numerically and experimen-
tally verifies that, by applying the proposed motion planning,
the robotic arm can hit the target robustly.

II. LINEARIZED DYNAMIC MODEL OF ROBOTIC ARM

The equation of motion of a n degree-of-freedom robotic
arm can be described as a time-variant non-linear system,
such as

M(θ)θ̈ + h(θ, θ̇) + g(θ) = τ (1)

where θ ∈ �n is the joint position, τ ∈ �n is the joint
torque, M(θ) ∈ �n×n is the inertia matrix, h(θ, θ̇) ∈ �n

is the centrifugal force and the Coriolis force, and g(θ) ∈ �n

is the gravitational force acting on the robotic arm.
Assuming that the Cartesian coordinate position of the

end-effector is described as p ∈ �m (m ≤ 3), the kinematic
relation between θ and p can be described as a non-linear
function such as

p = f(θ) (2)

To apply the linear systems theory, we need to derive the
linearized model of the robotic arm. Linearizing (1) and (2)
with respect to the equilibrium points θ = θe, τ = τ e,
and p = pe, which satisfy θ̈ = θ̇ = 0, yields the linear
time-invariant state equation and the output equation with n
inputs, m outputs, and 2n state variables, as follows:

d

dt

[
δθ(t)
δθ̇(t)

]
= A

[
δθ(t)
δθ̇(t)

]
+ Bδτ (t) (3)

δp(t) = C

[
δθ(t)
δθ̇(t)

]
(4)

where

A =
[

0 In

−M−1G 0

]
θ=θe

B =
[

0
M−1

]
θ=θe

, C =
[
J 0

]
θ=θe

(5)

In is an n×n identity matrix, and J and G are the Jacobian
matrices concerning the structure of the robotic arm and the
gravitational force, respectively. Jacobians J and G are given
by

J(θ) =
∂f

∂θ
∈ �m×n, G(θ) =

∂g

∂θ
∈ �n×n (6)

where δθ(t) = θ(t) − θe, δθ̇(t) = θ̇(t) − θ̇e, δτ (t) =
τ (t) − τe, and δp(t) = p(t) − pe.

III. GENERATING MECHANISM OF END-POINT POSITION
ERROR

A. Formulation based on Output Controllability

A system is said to be output controllable if it is possible
to construct inputs that will transfer any given initial output
to any final output until a finite time[6]. The output control-
lability matrix N of the robotic arm can be obtained by the
matrices A, B, and C of (5). This yields

N = J
[

0 M−1 0 (−M−1G)M−1 · · ·
· · · (−M−1G)2n−1M−1

]
(7)

The output controllable subspace steered by the input
torque τ until a finite time is given as the range space of the
matrix N , which is described as

Range N = {p | p = Nτ̂ , ∀τ̂ ∈ �2n2}, (8)

where

τ̂ = [ τ̂T
1 , τ̂T

2 , . . . , τ̂T
n ]T , τ̂i =

∫ tf

0

qi(−t)τ (t)dt,

qi(t) is a time-dependent scalar function, tf > 0 is arbitrary
time.

According to the linear systems theory, the strengths of the
effects of the joint torque τ̂ (input) on the end-point position
p (output) can be given by the singular value decomposition
of the matrix N [3], [4]. Let the singular value decomposition
of the matrix N , which has full rank m, be described as

N = UNΣNV T
N =

m∑
i=1

σNiuNiv
T
Ni (9)

ΣN =
[

diag(σN1, σN2, · · · , σNm) 0
]

(10)

where σN1 ≥ σN2 ≥ . . . ≥ σNm > 0 are the singular
values, UN and V N are orthogonal matrices, the ith column
vectors of which are uNi and vNi, respectively, and 0
is a zero matrix. The magnitudes of the singular values
represent the strengths of the effects of input on output
[3], [4]. Therefore, the singular vector uN1 corresponding
to the maximum singular value σN1, which we will call
singular vector, indicates the direction in which the effect of
the joint torque (input) on the end-point position (output) is
maximized. If there is noise in the input torque, the singular
vector indicates the direction in which the effect of the noise
have the maximum intensity with the end-point position.
Thus if we can control the direction of the singular vector, we
will be able to control the direction of the end-point position
error caused by the noise torque.

B. Relationship between Singular Vector and Direction of
Position Error Generated by Disturbance

This section reveals that the end-point position error given
by the disturbance converges onto near the singular vector
corresponding to the maximum singular value. We conduct
example simulations using the two degree-of-freedom robotic
arm in the horizontal plane as shown in Fig. 2. We define the
joint torque and the end-point position (x, y) as the input



and output variables, respectively. The inertia matrix M and
the centrifugal force vector h are given as

M =
[

1.151 + 0.0828 cosθ2 0.0758 + 0.0414 cosθ2

0.0758 + 0.0414 cosθ2 0.0758

]
(11)

h =
[ −0.0828θ̇1θ̇2 sin θ2 − 0.0414θ̇2

2 sin θ2

0.0414θ̇2
1 sin θ2

]
(12)

which are obtained by the identification experiment of the
direct-drive robotic arm applied to the experiment described
later.
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Fig. 2. Two joint robotic arm which moves within a horizontal plane.

The joint torque to trace the nominal end-point’s trajectory
is obtained using the equation of motion (1) and the kine-
matic equation (2) in advance. The input torque is set as the
sum of its nominal joint torque and the Gaussian white noise.
Applying the input torque to the feedforward controller, we
obtain the locus of the end-point. This simulation is repeated
50 times and obtain the variance of the end-point position
error caused by the disturbance.

We set the nominal trajectory of the end-point as the
straight line connecting the start to the goal. Assuming that
the velocity and acceleration of the end-point at both ends
are zero, we can obtain the nominal trajectory as

p (t) = p0 +
(
15t4n − 6t5n − 10t3n

) (
p0 − pf

)
, (13)

where tn is normalized time given by dividing elapsed time
t by the total motion time tf , which can be described as
tn = t/tf .

We let the start and goal be p0 = (0.22, 0)T m and
pf = (0.31, 0.225)T m, the total motion time tf be 0.4
sec, and the variance of the Gaussian white noise be
(9, 9) N2m2. Fig. 3 shows nominal arm movement and
the singular vectors at each end-point position at t =
0, 0.08, 0.16, 0.24, 0.32, 0.40 sec. Fig. 4 shows the
position error distribution denoted by ×. The center position
of each figure indicates the nominal position of the end-point
at each time step. The straight line indicates the direction of
the singular vector at each nominal end-point position.

According to the simulation results, the end-point devi-
ates from nominal end-point position by the disturbance.
However, the end-point constantly converges near onto the
singular vector, even though the direction of the singular
vector changes with the arm movement.

If we can fit the direction of the singular vector to the
tangential direction of the nominal trajectory, we will be
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Fig. 3. Singular vectors at each end-point position in a straight line
trajectory

able to obtain the robust trajectory from which the end-
point suffered from the disturbance never deviate greatly.
The following section describes the motion planning which
enables the singular vector to point toward the tangential
direction of the trajectory as much as possible.
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Fig. 4. Position error distribution and singular vector at each nominal
end-point position.

IV. MOTION PLANNING IN CONSIDERATION OF
GENERATION DIRECTION OF END-POINT POSITION

ERROR

This section discusses the motion planning which fits the
direction of the singular vector to the tangential direction
of the trajectory as much as possible. In Fig. 5, the thin
lines drawn in the xy-plane are the singular vector at each
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end-point position and the thick curve represents the end-
point’s trajectory obtained by the motion planning proposed
in this section. The end-point moving along the singular
vector reaches the goal ph finally.

The trajectory generation algorithm is based on the con-
cept of the potential functions [5]. We make the virtual force
fp ∈ �m act on the end-point, which are given as the sum
of three virtual forces as follows:

fp = fs + fh + fd (14)

The first one is fs ∈ �m acting toward the direction of the
singular vector. The second one is the attractive force to the
goal fh ∈ �m. The third one is the damping force fd ∈ �m.
Each force is given by

fs = ks ‖ph − p‖ sgn{uT
N1(ph − p)}uN1 (15)

fh = khuh (16)
fd = −kdṗ, (17)

where ks, kh and kd are gains. As shown in Fig. 5, uh is
the unit vector indicating to the goal ph from the current
end-point p, and uN1 is the singular vector obtained from
(9), whose direction is determined by the sgn function. We
let the magnitude of the attracting force fh constant to gain
the enough velocity at the goal.

From equations (14) to (17), the relative magnitude of
the three virtual forces fh, fs and fd are defined by the
relative value of the three gains ks, kh and kd. Thus, there
are a number of design choices to get the nominal trajectory.
Here, the influence given by the three gains is described.

The gain ks controls the relative influence of the virtual
force acting toward the direction of the singular vector.
If we choose to weight its value more heavily than the
others, we will obtain the trajectory which enables the
singular vector to point toward the tangential direction of the
trajectory. However, the relative influence of the attractive
force becomes small. The obtained trajectory may need a
long time for the end-point to reach the goal.
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Fig. 6. Nominal trajectory obtained by the proposed trajectory generator

The gain kh controls the relative influence of the attractive
force. If we choose to weight its value more heavily than
the others, we will obtain the trajectory, in which the end-
point is quickly attracted to the goal. However, the relative
influence of the virtual force acting toward the direction of
the singular vector becomes small. Thus the singular vector
of the obtained trajectory does not point toward the tangential
direction of the trajectory.

The gain kd controls the relative influence of the damping
force. If we choose to weight its value more heavily than
the others, the movement of the end-point will be slow. If
we set the other gains as zero, the magnitude of the braking
force can be controlled.

Finally, the joint torque τ (t) at time t can be given by

τ (t) = JT (t) fp(t) (18)

The joint angle θ(t + ∆t) at time t + ∆t is obtained by the
numerical integration of θ̈(t) given by substituting τ (t) for
the motion equation (1).

V. APPLICATION TO HITTING MOTION

This section numerically and experimentally verifies that,
by applying the proposed motion planning, the robotic arm
can hit the target robustly.

A. Trajectory Planning

We apply the proposed algorithm to the two-DOF robotic
arm shown in Fig. 2 and obtain the nominal trajectory.
Let the start point p0 = (0.22, 0)T m, the hitting point
ph = (0.3, 0.2)T m. The gains are set as described in Table
I, where th is the hitting time when the end-point reaches
‖ph − p‖ < Dt/2, assuming that the target is round shape
with a diameter, Dt = 10mm. While t > th, to stop the
motion, we affect only fd as the braking force. If the end-
point velocity satisfies ‖ṗ‖ < 0.005m/s, we stop generating
the trajectory.

Figure 6 shows the trajectory obtained by the proposed
algorithm and the singular vectors at each end-point position.
The obtained trajectory is curved and passes fairly close to
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Fig. 7. Simulation results for feed-forward controller based on the proposed
trajectory generation algorithm. (a) arm movement distributions and (b)
input torque profiles.

the hitting point. The singular vectors obviously point toward
the tangential direction of the trajectory. This yields that
the proposed algorithm enables the singular vector to point
toward the tangential direction of the trajectory.

B. Position Error Caused by Disturbance

The simulation results in section III-B make it obvious that
the position error of the end-point converges onto near the
singular vector. In this section, we obtain the end-point locus
of the robotic arm controlled by the joint torque including
the disturbance. The nominal joint torque is obtained from
the proposed trajectory generation algorithm in advance. The
input torque is set as the sum of its nominal joint torque and
the Gaussian white noise. Applying the input torque to the

TABLE I
VALUES OF GAIN PARAMETERS FOR THE MOTION PLANNING

State ks kh kd

t ≤ th (Before hitting) 35 75 30

t > th (After hitting) 0 0 40
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Fig. 8. Simulation results for feed-forward controller based on the straight
line trajectory. (a) arm movement distributions and (b) input torque profiles.

feedforward controller, we obtain the locus of the end-point.
For comparison, we also apply a feedforward controller to
the straight line trajectory obtained in section III-B. These
two simulations are repeated 50 times. The variance of the
Gaussian white noise is set as (25, 25) N2m2.

Figure 7 (a) describes the loci of the end-point obtained
by controlling the direction of the singular vector to be
tangential to the trajectory utilizing the propose algorithm.
Fig. 7 (b) shows its input torque, where, at hitting time
t = th, the input torques discontinuously change because
the value of the gains are changed as shown in Table I. Fig.
8 (a) and (b) describe the simulation result of the straight
line trajectory. The loci of Fig. 7 converges closer to the
nominal trajectory than that of Fig. 8. According to these
results, by controlling the direction of the singular vector to
be tangential to the trajectory, we can implement the robust
motion which can keep the end-point of the robotic arm close
to the nominal trajectory, even if the input torque includes
the disturbance.

C. Experiment

This section verifies experimentally that the trajectory ob-
tained by the proposed algorithm is robust to the disturbance.



We apply the obtained trajectory to the two-DOF robotic
arm. Figure 9 shows the two-DOF direct-drive arm (SR-
402DD(s), Tokyo Electronic Systems Corp.) whose physical
parameters are obtained by the identification experiment,
which are described in (11) and (12). The assuming task
is hitting the ball, of which diameter is Dt = 10mm, by
the cylindrical bat installed at the end-point of the robotic
arm, of which diameter is Db = 6mm. We let the start point
and the hitting point be same as Fig. 7. Thus the trajectory
obtained in section V-A can be applied to this task. The
input torque is set as the sum of its nominal joint torque and
the Gaussian white noise. Applying the input torque to the
feedforward controller, we obtain the locus of the end-point.
For comparison, we also apply a feedforward controller to the
straight line trajectory obtained in section III-B. The hitting
task is repeated 50 times. The variance of the Gaussian white
noise is set as (25, 25) N2m2.
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Target

Two-DOF
DD robotic arm

x

y

p0 = (0.22, 0)T m

ph = (0.3, 0.2)T m

Start

Hitting point

Target

BatTwo-DOF
DD robotic arm

Fig. 9. Experimental set-up

Figure 10 describes the loci of the end-point obtained
by controlling the direction of the singular vector to be
tangential to the trajectory utilizing the propose algorithm.
Fig. 11 describe the experimental result of the straight line
trajectory. The loci of Fig. 10 converges closer to the nominal
trajectory than that of Fig. 11. While the robotic arm applied
the straight line trajectory hits the target 18 out of 50
times (its batting average is 36%), the robotic arm applied
the proposed algorithm achieves to hit the target 50 out
of 50 times (its batting average is 100%). According to
these experimental results, by controlling the direction of
the singular vector to be tangential to the trajectory, we can
implement the robust motion which can keep the end-point
of the robotic arm close to the nominal trajectory, even if
the input torque includes the disturbance.

This section experimentally reveals that the control of
direction of the singular vector is very effective approach
for robotic arms to achieve high robustness.

VI. CONCLUSION

The present paper revealed that (1) the positional error
of the end-point converged onto near the singular vector of
the output controllability matrix, (2) the proposed trajectory
generation algorithm enabled the singular vector to point
toward the tangential direction of the trajectory, and (3)
the end-point of the robotic arm could be controlled close
to the nominal trajectory by using the proposed trajectory
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Fig. 10. Experimental results for feed-forward controller based on the
proposed trajectory generation algorithm. (a) arm movement distributions
and (b) extended figure around the hitting point.
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Fig. 11. Experimental results for feed-forward controller based on the
straight line trajectory. (a) arm movement distributions and (b) extended
figure around the hitting point.

planning algorithm, even though the input torque includes the
disturbance. Our future work is to propose the new trajectory
generation algorithm including the orientation error.
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[7] J. Paattilammi and P.M. Mäkilä, “Fragility and Robustness: A case
study on Paper Machine Headbox Control,” IEEE Control System
Magazine, vol. 20, no. 1, pp.13-22, 2000.

[8] E. Plaky and L.E. Kavraki, “Distributed Sampling-based Roadmap
of Trees for Large-scale Motion Planning,” Proc. of the 2005 IEEE
International Conference on Robotics and Automation, pp. 3879-3884,
2005.

[9] Z. Shiller and S. Dubowsky, “On Computing the Global Time-optimal
Motions of Robotic Manipulators in the Presence of Obstacle,” IEEE
Trans. on Robotics and Automation, vol. 7, no. 6, pp. 785-797, 1991.

[10] T. Yamawaki and M. Yashima, “Effect of Gravity on Manipulation
Performance of a Robotic Arm,” Proc. of the 2007 IEEE International
Conference on Robotics and Automation, pp. 4407-4413, 2007.


